首页> 外文学位 >Polygalacturonase-inhibiting protein sequence, structural, and functional analyses with implications in plant disease resistance.
【24h】

Polygalacturonase-inhibiting protein sequence, structural, and functional analyses with implications in plant disease resistance.

机译:聚半乳糖醛酸酶抑制蛋白序列,结构和功能分析,对植物抗病性有影响。

获取原文
获取原文并翻译 | 示例

摘要

Plant-pathogen interactions result in degrees of plant resistance or susceptibility depending on, in part, numerous biotic factors from both players. Microbe and/or pest challenges to plants often involve the plant cell wall, an outer compartment with roles in cell support and signaling. This dissertation examines the specific interplay between a class of pathogen virulence factors that can degrade the pectin component of cell walls, polygalacturonases (PGs), and plant proteins that limit PG activity and serve as defense factors, polygalacturonase-inhibiting proteins (PGIPs). PGIPs' role in plant defense response pathways is detailed in Chapter 1. PGIPs are common to all angiosperms examined and have diversified into small gene families in many lineages. The sequence variation of 237 PGIPs from 114 angiosperm species was examined here to identify regions of diversity and to attempt to predict the consequent implications on PGIP structure. The majority of divergent residues lie within the beta-sheet shown to interact with PGs. This variation indicates that structural consideration must be taken when selecting PGIPs for inhibition of specific PGs.;Pierce's disease (PD) of grapevines is caused by the bacterium Xylella fastidiosa (Xf), which resides in the xylem vessels, systemically infecting vines and eventually causing plant death. The PG of Xf is necessary for systemic vine colonization. Simulated interaction models of XfPG and various PGIPs highlight residues that help stabilize the complex between the pear fruit PGIP (pPGIP) and XfPG; these same complexes are less electrostatically feasible in reactions modeled with a grape PGIP. Transgenic grapevines expressing pPGIP were previously shown to provide increased PD protection, presumably through XfPG inhibition. We developed recombinant expression systems to compare angiosperm PGIPs' inhibition of XfPG through in vitro and in vivo assays to find an optimal inhibitor to exploit for PD protection.;Given that pPGIP expression imparts increased PD resistance in greenhouse trials, we sought to evaluate the pPGIP-expressing grapevines in a commercially relevant setting. Field examinations in two agricultural areas -- Solano and Riverside Counties, CA -- were established to test pPGIP efficacy against mechanical inoculations or natural infections of Xf, respectively. PGIPs, as cell wall proteins, are found in the xylem sap and are, therefore, able to cross graft junctions from PGIP-expressing rootstocks into target scions. We confirmed that pPGIP from transgenic rootstocks can be recovered in scion leaves that do not express pPGIP. Grafted grapevines were tested in the field alongside the own-rooted transgenic and control vines for PD resistance. PD Symptoms at the Solano site appeared after two years of annual mechanical inoculations and were reduced in 'Thompson Seedless' vines expressing pPGIP. Symptoms at the Riverside site show similar trends with pPGIP affording some protection, though unintended diseases have confounded results from that site.;The transgrafting strategy used here, delivering defense factors via transgenic rootstocks, has promising commercial applications within the evolving regulatory climate for genetically modified plant products. The phylogenetic and structural analyses of PGIPs detailed in Chapter 2 provide a framework to study the predicted efficacy of a PGIP to inhibit numerous PGs from important pathogens. Such candidate PGIPs can then be examined using the techniques refined in Chapter 3, with promising PGIPs tested in expanded trials, as was started with grapevines and pPGIP in Chapter 4.
机译:植物与病原体的相互作用导致植物抗性或敏感性的程度部分取决于两个参与者的众多生物因子。对植物的微生物和/或害虫挑战通常涉及植物细胞壁,即在细胞支持和信号传导中起作用的外部隔室。本文研究了一类可降解细胞壁果胶成分的病原体毒力因子,多半乳糖醛酸酶(PGs)和限制PG活性并充当防御因子的植物蛋白,多半乳糖醛酸酶抑制蛋白(PGIPs)之间的特异性相互作用。 PGIP在植物防御反应途径中的作用在第1章中进行了详细介绍。PGIP对所有被调查的被子植物都是通用的,并且已在许多谱系中多样化为小型基因家族。这里检查了来自114个被子植物的237个PGIP的序列变异,以确定多样性区域并试图预测对PGIP结构的影响。大多数不同的残基位于显示与PG相互作用的β-折叠中。这种变异表明选择PGIP来抑制特定PG时必须考虑结构上的考虑。葡萄的皮尔斯氏病(PD)是由木杆菌Xylella fastidiosa(Xf)引起的,该细菌驻留在木质部的血管中,全身感染葡萄树并最终导致植物死亡。 Xf的PG对于系统性葡萄树定植是必需的。 XfPG和各种PGIP的模拟相互作用模型突出显示了有助于稳定梨果实PGIP(pPGIP)和XfPG之间的复合物的残基;在用葡萄PGIP模拟的反应中,这些相同的复合物在静电上不太可行。先前显示,表达pPGIP的转基因葡萄提供了增强的PD保护,大概是通过XfPG抑制。我们开发了重组表达系统,以通过体外和体内试验比较被子植物PGIP对XfPG的抑制作用,从而找到可用于PD保护的最佳抑制剂。鉴于pPGIP的表达在温室试验中具有增强的PD抗性,因此我们试图评估pPGIP在与商业相关的环境中表达葡萄树。建立了两个农业地区的田野检查-加利福尼亚的索拉诺和里弗赛德县-以分别测试pPGIP对抗Xf的机械接种或自然感染的功效。 PGIPs是细胞壁蛋白,存在于木质部树液中,因此能够将表达PGIP的砧木的移植物交界到目标接穗中。我们证实,转基因砧木中的pPGIP可以在不表达pPGIP的接穗中回收。在田间测试了嫁接的葡萄藤与自生根的转基因和对照葡萄藤对PD的抵抗力。一年进行一年的机械接种后,Solano部位的PD症状出现,在表达pPGIP的“汤普森无核”葡萄中减少。 Riverside站点的症状显示出相似的趋势,pPGIP提供了一定的保护,尽管意外的疾病对该站点的结果产生了混淆。此处使用的移植策略通过转基因砧木传递防御因子,在不断发展的转基因调控环境中具有广阔的商业应用前景植物产品。第2章详细介绍了PGIP的系统发育和结构分析,为研究PGIP抑制重要病原体中大量PG的预测功效提供了框架。然后可以使用第3章中改进的技术来检查此类候选PGIP,并在第4章中以葡萄和pPGIP作为开始,在扩展的试验中测试有前途的PGIP。

著录项

  • 作者

    Chestnut, Zachary Andrew.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Botany.;Plant pathology.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号