首页> 外文学位 >Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics.
【24h】

Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics.

机译:用于有机-无机混合光伏的自由基驱动的硅表面钝化。

获取原文
获取原文并翻译 | 示例

摘要

Surface passivation has become increasingly crucial for thin silicon photovoltaic devices. Quinhydrone/ methanol (QHY/ME) has been utilized in the past as a temporary passivant for silicon surfaces with an outstanding lifetime. The work described in this thesis investigates the passivation mechanism of quinone molecules on silicon. The passivation behaviors of free radicals in quinone molecules, and other radical sources like photoinitiators, are discovered for the first time.;This work confirms that radical intermediates are the reactive species in quinhydrone/ methanol passivation on silicon surfaces. The two constituent parts, p-benzoquinone(BQ) and hydroquinone(HQ), have been studied separately. BQ abstracts the hydrogen atom from methanol to become semi-quinone radicals (QH*). Both QH* and the resulting methanol radical are responsible for the large, instantaneous increase in minority carrier lifetime in BQ/ME, obtaining the lowest surface recombination velocity of 1.6cm/s. HQ releases a hydrogen atom to become QH*. This radical-driven passivation mechanism is also valid on other radical sources like photoinitiators and weak bonds like C-Cl.;The chemical passivation mechanism was further investigated by X-ray photoelectron spectroscopy (XPS), which confirmed the bonding of aromatic groups to the surface. Density functional theory (DFT) results support the possibility of QH* bonding from a thermodynamic perspective.;The electronic structure of BQ/ME passivated Si is determined by a combination of the surface band bending and electron affinity/dipole. Both the photoemission and Scanning Kelvin Probe Microscopy (SKPM) techniques indicate a downward band bending of H-Si and BQ treated samples. DFT calculations show that a negative dipole is formed upon bonding of BQ radicals on the surface, decreasing the surface electron affinity and work function. Both the negative dipole and downward band bending contribute to the formation of electron accumulation on n-Si by BQ bonding resulting in the observed surface passivation.;Hybrid organic/silicon devices combining PEDOT:PSS on Si with BQ/ME as a surface passivant were fabricated. The introduction of the BQ passivating layer does not provide a barrier to charge transfer. A device efficiency of 9.6% was achieved. Quantum efficiency data shows a good light absorption near the front of the cell indicating a well-passivated front surface.;At last, another alternative passivation method --- SiOC passivation was studied, where the SiOC films were deposited with plasma-free ultra-low-temperature ALD. The surface passivation effect and stability of the SiOC films were compared with the quinone passivation.
机译:表面钝化对于薄硅光伏器件变得越来越重要。醌氢醌/甲醇(QHY / ME)过去曾被用作硅表面的临时钝化剂,具有出色的使用寿命。本文的工作研究了醌分子在硅上的钝化机理。首次发现醌分子中自由基的钝化行为以及其他自由基源(如光引发剂)。这项工作证实了自由基中间体是硅氢醌/甲醇钝化中的反应性物种。对苯二醌(BQ)和对苯二酚(HQ)这两个组成部分已分别进行了研究。 BQ从甲醇中提取氢原子成为半醌自由基(QH *)。 QH *和生成的甲醇自由基都导致BQ / ME中少数载流子寿命的大幅度瞬时增加,从而获得最低的表面重组速度1.6cm / s。 HQ释放出氢原子变成QH *。这种自由基驱动的钝化机理也适用于其他自由基源,如光引发剂和弱键,如C-Cl。化学钝化机理通过X射线光电子能谱(XPS)进行了进一步研究,证实了芳香族基团与表面。密度泛函理论(DFT)的结果从热力学的角度支持了QH *键的可能性。BQ / ME钝化Si的电子结构由表面能带弯曲和电子亲和力/偶极子共同决定。光发射和扫描开尔文探针显微镜(SKPM)技术都表明H-Si和BQ处理的样品的向下带弯曲。 DFT计算表明,当表面上的BQ自由基键合时会形成负偶极子,从而降低了表面电子亲和力和功函。负偶极弯曲和向下带弯曲都有助于通过BQ键在n-Si上形成电子积累,从而导致观察到的表面钝化。;结合了Si上的PEDOT:PSS和BQ / ME作为表面钝化剂的混合有机/硅器件捏造的。 BQ钝化层的引入不会为电荷转移提供障碍。器件效率达到了9.6%。量子效率数据表明,在电池前部附近有良好的光吸收,表明前表面已钝化。最后,研究了另一种钝化方法-SiOC钝化,在该方法中,SiOC薄膜采用无等离子体的超沉积方法沉积。低温ALD。将SiOC薄膜的表面钝化效果和稳定性与醌钝化进行了比较。

著录项

  • 作者

    Chen, Meixi.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Analytical chemistry.;Alternative Energy.;Energy.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号