首页> 外文学位 >Integrating petrophysical and geophysical data in forward and inversion modelling of Zone 5-8, Raglan Mine, Quebec, Canada
【24h】

Integrating petrophysical and geophysical data in forward and inversion modelling of Zone 5-8, Raglan Mine, Quebec, Canada

机译:在加拿大魁北克省拉格兰矿区5-8区的正反演模型中整合岩石物理和地球物理数据

获取原文
获取原文并翻译 | 示例

摘要

Raglan Mine is located on the Ungava peninsula, Quebec, Canada. It's a Ni-Cu-PGE magmatic sulphide deposit undergoing brownfield exploration. Given the available data from Raglan Mine and the underutilization of geophysical data integration in mineral exploration, this thesis' purpose is to investigate the utility of data integration. Specifically, four objectives are set to integrate petrophysical and geophysical data in forward and inversion modelling of Zone 5-8 at Raglan Mine. The first two objectives are met through forward modelling a 3D geological model. Magnetic and gravity forward models are compared to observed data. The major outcome establishes a macro-magnetic susceptibility maximum for the ultramafic of 0.31 SI. Vertical gravity modelling shows lows over sediments, and highs over basalts and an intermediate high over the ultramafic. Additionally, the resolvability of ore targets is investigated, showing that these targets are unresolvable using airborne and terrestrial magnetic and gravity methods. These results are incorporated in inversion modelling. Inversion modelling is an optimization problem, which is non-unique, meaning many solutions could fit. This issue is mitigated through constraints from input data and reference models (cooperative inversion). Objectives 3 and 4 are met by running single parameter and cooperative inversions. Outcomes of single parameter inversions show that magnetic inversions are effective in outlining the UM unit to a depth of ~1000-1250m with a cut off of 0.05 SI. Single parameter gravity gradient inversions outline lower density sediments and higher density basalts. The ultramafic is outlined to depths of ~560-910m (cut off 0-0.3 g/cm3) after which ambiguity exists due to density overlap with basalt. Gravity gradient inversions are enhanced through the cooperative magnetic isosurface reference model, which also balances out the impact of the surface geology constraint. The gravity gradient isosurface constraint on the cooperative magnetic inversion causes the ultramafic limbs to diverge. Overall, forward modelling is able to approximate observed data, and single parameter and cooperative inversion modelling are able to position the magnetic ultramafic and higher and lower density sediments and basalts in geologically and geophysically logical locations. This approach has promising applications in other zones.
机译:拉格伦矿位于加拿大魁北克的翁加瓦半岛。这是镍-铜-PGE岩浆硫化物矿床,正在进行棕地勘探。考虑到拉格兰矿场的可用数据以及地球物理数据集成在矿物勘探中的利用不足,本论文的目的是研究数据集成的实用性。具体而言,设定了四个目标,以将岩石物理和地球物理数据整合到拉格伦矿5-8区的正反演模型中。通过对3D地质模型进行正向建模,可以满足前两个目标。将电磁和重力正演模型与观测数据进行比较。主要结果为0.31 SI的超镁铁矿建立了宏观磁化率最大值。垂直重力模型显示沉积物上的低点,玄武岩上的高点,超镁铁质上的中间高点。此外,还对矿石目标的可分辨性进行了研究,结果表明,使用空中和地面磁场和重力方法无法分辨这些目标。这些结果被合并到反演模型中。反演建模是一个不唯一的优化问题,这意味着许多解决方案都适用。通过输入数据和参考模型的约束(合作反演)可以缓解此问题。通过运行单个参数和协同求反可以实现目标3和4。单参数反演的结果表明,磁反演可有效地将UM单元勾勒到〜1000-1250m的深度,且截止值为0.05 SI。单参数重力梯度反演概述了较低密度的沉积物和较高密度的玄武岩。超镁铁矿的轮廓深度约为〜560-910m(截断0-0.3 g / cm3),之后由于与玄武岩的密度重叠而存在歧义。通过协同磁等面参考模型可以增强重力梯度反演,这也可以平衡地表地质约束的影响。重力梯度等值面对协同磁反演的约束导致超镁铁质肢体发散。总的来说,正演模型能够近似观测到的数据,单参数和协同反演模型能够将磁性超镁铁矿以及密度更高和更低的沉积物和玄武岩定位在地质和地球物理逻辑位置。这种方法在其他区域也有希望的应用。

著录项

  • 作者

    Maedel, Robin Alexander.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Geological engineering.;Mining engineering.;Geophysical engineering.
  • 学位 M.A.Sc.
  • 年度 2018
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号