首页> 外文学位 >Relaxations in Complex Polymer Systems
【24h】

Relaxations in Complex Polymer Systems

机译:复杂聚合物系统中的弛豫

获取原文
获取原文并翻译 | 示例

摘要

Many applications that employ polymeric materials rely on mixtures (polymer/polymer, polymer/nanoparticle, polymer/filler). A key challenge of using these materials is understanding interrelations between the physical properties and the local and macroscale morphologies. The most common systems are mixtures of two homopolymers, A and B, which can exhibit properties that are more desirable than those of the pure components. Unlike miscible small molecule systems, miscible A/B polymer/polymer blends, while macroscopically homogeneous, can be spatially compositionally heterogeneous at the molecular level, which can cause deviations in physical properties. Applications in the areas of organic electronics, membranes, and nanoscale coatings can also require these materials to function under various conditions of geometric confinement, such as thin films. This introduces an additional complication because the proximity to an external interface (free surface or substrate) influences the local composition and morphology, leading to film thickness-dependent behavior. To this end, this dissertation explores three problems involving the role of morphology on dynamic processes in polymeric systems of different local intermolecular environments.;First, we investigate the role of local spatial compositional heterogeneity on the dynamics of the A component in bulk, miscible A/B polymer/polymer blends. The dynamics of the faster, lower glass transition temperature component A, at temperatures sufficiently high above the blend glass transition, manifest the behavior of chains relaxing in a compositionally homogeneous environment. For temperatures lower than the blend glass transition, the A component chains relax in two distinctly different local compositional environments, manifesting the influence of spatial compositional heterogeneity.;Having investigated the role of spatial compositional fluctuations on the relaxations of the A component in A/B polymer/polymer blends, the additional effect of geometric thickness confinement at the nanoscale -- confining the A/B mixture between two substrates -- was studied. In thin film blends, the concentration of the A component may differ from the macroscopic average composition at different depths into the film, largely due to its preferential interactions with the confining substrates. In this case, the compositional changes driven by the interfacial interactions become dominant when the films are sufficiently thin. A key finding is that, whereas thickness confinement effects modify the dynamics of pure homopolymer chains for thicknesses up to a few nanometers, the effects on these A/B blends extend over hundreds of nanometers.;The third problem is based on the recognition that in most applications, polymer thin films can be required to contact other polymers or different "hard" materials. The vast majority of studies that investigate physical properties examine either free or supported films. Here we investigate the dynamics of a homopolymer A confined between a hard substrate C and a soft, immiscible polymer film B. A surprising finding is that the presence of the soft polymer B has the effect of increasing the relaxation rates of polymer A significantly, and over unusually large length-scales, not observed in polymers confined between two hard substrates C. These findings implicate the sensitivity of polymer dynamics to the modulus of the confining environment.;The works described in this dissertation provide a comprehensive view of how physical properties of polymers can change significantly in different environments -- compositional changes, changes in mechanical moduli of the surrounding environment, and geometric constraints. Insights gained from these studies can be used to understand and control the physical properties of polymer-based materials for future applications.
机译:使用聚合物材料的许多应用都依赖于混合物(聚合物/聚合物,聚合物/纳米颗粒,聚合物/填料)。使用这些材料的主要挑战是了解物理性质与局部和宏观形态之间的相互关系。最常见的体系是两种均聚物A和B的混合物,它们表现出比纯组分更理想的性能。与可混溶的小分子系统不同,可混溶的A / B聚合物/聚合物混合物在宏观上是均质的,但在分子水平上在空间上可能是异质的,这可能导致物理性质出现偏差。在有机电子,薄膜和纳米级涂料领域的应用也可能要求这些材料在各种几何限制条件下发挥作用,例如薄膜。由于与外部界面(自由表面或基材)的接近程度会影响局部组成和形态,从而导致薄膜厚度相关的行为,因此会带来额外的复杂性。为此,本文探讨了三个问题,涉及形态学在不同局部分子间环境的聚合物体系中动态过程中的作用。首先,我们研究了局部空间组成异质性在大体积,可混溶A中对A组分动力学的影响。 / B聚合物/聚合物共混物。在混合物玻璃化转变温度以上足够高的温度下,更快,更低的玻璃化转变温度成分A的动力学表现出链在组成均匀的环境中松弛的行为。对于低于混合玻璃化转变温度的温度,A组分链在两个截然不同的局部组成环境中弛豫,从而表现出空间组成异质性的影响。;已经研究了空间组成波动对A / B中A组分弛豫的作用。聚合物/聚合物共混物,研究了在纳米级限制几何厚度的附加效果-将A / B混合物限制在两个基材之间。在薄膜共混物中,A组分的浓度在进入膜的不同深度可能与宏观平均组成不同,这主要是由于A组分与约束基质的优先相互作用。在这种情况下,当膜足够薄时,由界面相互作用驱动的组成变化将占主导。一个关键发现是,尽管厚度限制效应会改变纯均聚物链的动力学,直至厚度达到几纳米,但对这些A / B共混物的影响却超过了数百纳米。第三个问题是基于以下认识:在大多数应用中,可能需要聚合物薄膜来接触其他聚合物或不同的“硬”材料。绝大多数研究物理性质的研究都对自由或支持的薄膜进行了研究。在这里,我们研究了均聚物A的动力学,该均聚物A限制在硬质基材C和柔软的不混溶的聚合物薄膜B之间。一个令人惊讶的发现是,柔软的聚合物B的存在具有显着提高聚合物A的弛豫率的作用,并且这些发现暗示了聚合物动力学对约束环境模量的敏感性。本论文所描述的工作提供了关于如何物理分析物理性质的全面观点。聚合物在不同的环境中可能发生显着变化-成分变化,周围环境的机械模量变化以及几何约束。从这些研究中获得的见解可用于理解和控制聚合物基材料的物理性质,以备将来应用。

著录项

  • 作者

    Sharma, Ravi P.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号