首页> 外文学位 >Multi-Cavity Operations in Circuit Quantum Electrodynamics
【24h】

Multi-Cavity Operations in Circuit Quantum Electrodynamics

机译:电路量子电动力学中的多腔操作

获取原文
获取原文并翻译 | 示例

摘要

The eventual success of a quantum computer relies on our ability to robustly initialise, manipulate, and measure quantum bits, or qubits, in the presence of the inevitable occurrence of errors. This requires us to encode quantum information redundantly in systems that are suitable for Quantum Error Correction (QEC). One promising implementation is to use three dimensional (3D) superconducting microwave cavities coupled to one or more non-linear ancillae in the circuit quantum electrodynamics (cQED) framework. Such systems have the advantage of good intrinsic coherence properties and large Hilbert space, making them ideal for storing redundantly encoded quantum bits. Recent progress has demonstrated the universal control and realisation of QEC beyond the break-even point on a logical qubit encoded in a mulit-photon state of a single cavity. This thesis presents the first experiments in implementing quantum operations between multi-photon states stored in two separate cavities. We first explore the ability to create complex two-mode entangled states and perform full characterisation in a novel multi-cavity architecture. Subsequently, we demonstrate the capability to implement conditional quantum gates between two cavity modes, assisted by a single ancilla. In addition, we develop a direct, tunable coupling between two spectrally separated cavities and use it to study complex multiphoton interference between stationary bosonic states. Combining this with robust single cavity controls, we construct a universal entangling gate between multi-photon states. The results presented in this thesis demonstrate the vast potential of 3D superconducting systems as robust, error-correctable quantum modules and the techniques developed constitute an important toolset towards realising universal quantum computing on error-corrected qubits.
机译:量子计算机的最终成功取决于我们在不可避免发生错误的情况下可靠地初始化,操作和测量量子位或量子位的能力。这要求我们在适合量子纠错(QEC)的系统中冗余编码量子信息。一种有希望的实现方式是在电路量子电动力学(cQED)框架中使用耦合到一个或多个非线性辅助的三维(3D)超导微波腔。这样的系统具有良好的固有相干特性和较大的希尔伯特空间的优势,使其非常适合存储冗余编码的量子比特。最近的进展表明,QEC的通用控制和实现超出了以单个腔的多光子状态编码的逻辑量子比特的收支平衡点。本文提出了在两个独立的腔中存储的多光子状态之间实现量子运算的第一个实验。我们首先探讨了创建复杂的双模纠缠态并在新颖的多腔体系结构中执行完整表征的能力。随后,我们展示了在单个腔体协助下在两个腔模式之间实现条件量子门的能力。此外,我们在两个光谱分离的腔之间建立了直接的可调谐耦合,并用它来研究固定的玻态之间的复杂多光子干涉。结合强大的单腔控制,我们构建了多光子状态之间的通用纠缠门。本文提出的结果证明了3D超导系统作为鲁棒的,可纠错的量子模块的巨大潜力,并且所开发的技术构成了在纠错量子位上实现通用量子计算的重要工具集。

著录项

  • 作者

    Gao, Yvonne Y.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号