首页> 外文学位 >Noncontact Adhesion and Mechanical Properties Characterization of Nano and Micro-Scale Structures Interacting with Elastic Waves.
【24h】

Noncontact Adhesion and Mechanical Properties Characterization of Nano and Micro-Scale Structures Interacting with Elastic Waves.

机译:与弹性波相互作用的纳米和微米尺度结构的非接触粘合和力学性能表征。

获取原文
获取原文并翻译 | 示例

摘要

At nano/micrometer scales, adhesion, a weak intermolecular interaction (van der Waals force), compared to several other type of forces often dominates the deformation and mechanics of nano/micro-scale structures. Accurate adhesion characterization of nano/micro-scale particles and thin-films (nm-scale) with various substrates is critically important in various industries. In semiconductor industries, understanding and characterizing particle-substrate adhesion bond and interfacial adhesion of thin films plays a critical role in fabricating defect-free structures. In this dissertation, ultrasonic-based techniques along with novel mathematical models are introduced to accurate adhesion energy characterization of nano/micro-scale particles and thin-films (Graphene layer is used as thin-film) in a non-contact manner. In the case of nano/micro-scale particles adhesion characterization, particle-substrate adhesion bond is characterized based on complex vibrational dynamics of micro-spherical particles on flat substrates subjected to ultrasonic base excitations. In the thin-films adhesion characterization case, the interfacial adhesion energy between thin films and various substrates is extracted based on the micro-spherical particles complex dynamics affected by the presence of thin-films on the vibrating substrates. Also in order to study the anisotropic adhesion properties and the rolling dynamic of nano/micro-scale particles as the most important dynamic in particle removal techniques, a novel non-contact manipulation/transport technique is introduced. In this technique, Surface Acoustic Wave (SAW) fields are employed to roll the particles on dry substrates in a non-contact manner in order to eliminate the inaccuracies and undesirable property modifications of contact-based techniques. Adhesion and mechanics of nano/micro-scale objects is affected by the viscoelastic properties of the contacting materials. Therefore, a novel and non-destructive technique along with a mathematical model is introduced to characterize the mechanical properties of solid materials based on the attenuation and dispersion of ultrasonic waves propagating in a medium. Further, in order to increase the adhesion measurements in the introduced in vibrational spectroscopy-based technique, thermoelastic damping as an important internal loss mechanism of elastic waves in nano/micro-scale structures is introduced and potential applications of smart materials to control this loss mechanism is discussed theoretically. Also at nano/micro-scale levels, size effect phenomena affect the mechanics of structures which cannot be explained with classical elasticity theories. Therefore, a higher order elasticity theory is adopted to study the thermoelastic damping at nano/micro-scales (such as vibrating adhesion bond and nano-film layers). Finally, potential applications of the discussed works are identified.
机译:在纳米/微米尺度上,与几种其他类型的力相比,粘附力,分子间相互作用较弱(范德华力)通常主导着纳米/微米尺度结构的变形和力学。在各种行业中,准确表征纳米/微米级颗粒和薄膜(纳米级)与各种基材的粘附特性至关重要。在半导体工业中,了解和表征颗粒与基底之间的粘合力以及薄膜的界面粘合力对制造无缺陷结构起着至关重要的作用。在本文中,引入了基于超声波的技术以及新颖的数学模型,以非接触方式准确地表征了纳米/微米级颗粒和薄膜(石墨烯层用作薄膜)的粘附能。在纳米/微米级颗粒粘附特性的情况下,颗粒-基底粘附键是基于微球形颗粒在经受超声基础激发的平坦基底上的复杂振动动力学来表征的。在薄膜粘附特性​​的情况下,基于受振动基底上薄膜的存在影响的微球形颗粒复合动力学,提取薄膜与各种基底之间的界面粘附能。同样,为了研究各向异性粘附特性和纳米/微米级颗粒的滚动动力学,这是颗粒去除技术中最重要的动力学,引入了一种新型的非接触操纵/传输技术。在该技术中,采用表面声波(SAW)场以非接触方式在干燥的基材上滚动粒子,以消除基于接触的技术的不准确之处和不希望的性能修改。纳米/微米级物体的粘附力和力学性能会受到接触材料的粘弹性的影响。因此,引入了一种新颖且无损的技术以及数学模型,以基于在介质中传播的超声波的衰减和分散来表征固体材料的机械性能。此外,为了增加在基于振动光谱的技术中引入的粘附力测量,引入了热弹性阻尼作为纳米/微米级结构中弹性波的重要内部损耗机理,并且智能材料在控制这种损耗机理方面的潜在应用从理论上进行讨论。同样在纳米/微米级别上,尺寸效应现象影响结构的力学,这是经典弹性理论无法解释的。因此,采用更高阶的弹性理论来研究纳米/微米级的热弹性阻尼(例如,振动粘结和纳米薄膜层)。最后,确定了所讨论作品的潜在应用。

著录项

  • 作者

    Saeedi Vahdat, Armin.;

  • 作者单位

    Clarkson University.;

  • 授予单位 Clarkson University.;
  • 学科 Physics Condensed Matter.;Nanoscience.;Physics General.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号