首页> 外文学位 >Fast Scanning Calorimetry Studies of Molecular Dynamics in Crystals, Liquids, and Glasses
【24h】

Fast Scanning Calorimetry Studies of Molecular Dynamics in Crystals, Liquids, and Glasses

机译:晶体,液体和玻璃中分子动力学的快速扫描量热研究

获取原文
获取原文并翻译 | 示例

摘要

There is a dearth of experimental techniques that can probe the dynamic properties of non-equilibrium condensed phases, particularly in materials characterized by very slow kinetics, such as glasses. Although fundamental theories on the glass transition and the properties of glass forming liquids abound, none can be validated because there is insufficient experimental data on the molecular dynamics of these materials at temperatures near the glass transition. In this Dissertation, I demonstrate the utility of a novel technique, Fast Scanning Calorimetry (FSC), to interrogate the kinetic and thermodynamic parameters of non-equilibrium condensed phases. The custom-built, quasi-adiabatic, thin-wire calorimeter can quickly heat micrometer scale crystalline, liquid, or glassy samples, all rapidly prepared by vapor deposition, to obtain high resolution and accurate data for non-equilibrium structural relaxation. Essentially, fast temperature scanning vibrationally perturbs the material far from its initial or equilibrium state and the calorimeter can measure the structural response of the material to these thermal perturbations.;My FSC studies reveal that, in the limit of high heating rates on the order of 106 K/s, the kinetics of any phase transition, e.g. glass devitrification, viscous liquid relaxation, or crystalline melting, simplify greatly to follow a zero-order rate law with an Arrhenius-like temperature dependence. The discovery of this unique kinetic regime, along with the analytical methodology developed in this Dissertation, have opened a new venue for gathering data on the molecular mobility of glassformers at low temperatures. Studies on the melting of superheated molecular crystals illustrate the capabilities of FSC and expose long-held misconceptions on the mechanism of heterogeneous melting. The observed high activation energy barriers to this diffusion-limited process demonstrate that, under conditions of rapid heating, the structure of the material at the crystalline-amorphous interface is surprisingly similar to that of a glass.;Furthermore, FSC studies that compare the devitrification of ordinary, melt-cooled glasses and vapor deposited amorphous phases confirm that both materials can undergo heterogeneous, surface-facilitated relaxation when heated with a sufficiently high rate. The high activation energies for these relaxation processes reflect the kinetic properties of the materials in their initial states at low temperatures, not at the temperatures at which transformation occurs. FSC studies that utilized a set of glass-forming liquid samples with well-defined initial states confirm the impact of initial sample temperature on the transformation rate and provide validation for a proposed model of front-propagated structural relaxation. In fact, the data measured by FSC can be used to calculate the thermodynamic driving force for front propagation and provide quantitative validation of the proposed relaxation mechanism.;Finally, the FSC relaxation rate data with the aforementioned sample set shows an astounding correlation with molecular self-diffusion at low temperatures, demonstrating that the technique can be used to measure diffusivity in condensed phases with very slow dynamics, even below the glass transition. The last study of this Dissertation is a preliminary exploration of the slow molecular kinetics in amorphous vapor-deposited materials with very stable initial structures. The results of these experiments implicate the existence of a crossover in equilibrium mobility parameters at temperatures below the glass transition, an unprecedented finding that may have a significant impact on developing an accurate theoretical framework for the formation and devitrification of glasses.
机译:缺乏能够探测非平衡缩合相动力学特性的实验技术,尤其是在动力学非常慢的材料(例如玻璃)中。尽管关于玻璃化转变和玻璃形成液体的性质的基本理论比比皆是,但由于在玻璃化转变附近的温度下,有关这些材料的分子动力学的实验数据不足,因此无法进行验证。在本文中,我演示了一种新颖的技术,即快速扫描量热法(FSC),用于询问非平衡缩合相的动力学和热力学参数。定制的准绝热细线量热仪可以快速加热微米级的晶体样品,液体样品或玻璃状样品,这些样品均可以通过气相沉积快速制备,从而获得高分辨率和准确的数据,以实现非平衡结构弛豫。从本质上讲,快速温度扫描会振动材料,使其远离初始状态或平衡状态,而量热仪可以测量材料对这些热扰动的结构响应。我的FSC研究表明,在高加热速率的极限下, 106 K / s,任何相变的动力学,例如玻璃的失透,粘稠的液体弛豫或晶体熔化大大简化,以遵循零阶速率定律,并具有类似于阿累尼乌斯的温度依赖性。这种独特的动力学机制的发现,以及本论文开发的分析方法,为在低温下收集玻璃形成剂的分子迁移率数据提供了新的场所。对过热分子晶体熔化的研究说明了FSC的功能,并揭示了长期以来对异质熔化机理的误解。观察到的对该扩散受限过程的高活化能垒表明,在快速加热的条件下,晶体-非晶界面处的材料结构令人惊讶地类似于玻璃。;此外,FSC研究比较了失透普通的熔融冷却玻璃和气相沉积的无定形相的证实,当以足够高的速率加热时,两种材料都可能经历表面不均匀的弛豫。这些弛豫过程的高活化能反映了材料在低温而不是在发生转变的温度下处于其初始状态的动力学特性。 FSC研究利用一组具有明确定义的初始状态的玻璃形成液体样品,证实了初始样品温度对转化率的影响,并为拟议的前传播结构弛豫模型提供了验证。实际上,FSC测得的数据可用于计算前沿传播的热力学驱动力,并为所提出的弛豫机理提供定量验证。最后,具有上述样品集的FSC弛豫率数据显示出与分子自我的惊人相关性-在低温下的扩散,表明该技术可用于以非常缓慢的动力学甚至在玻璃化转变以下测量冷凝相中的扩散率。本论文的最后一项研究是对初始结构非常稳定的非晶态气相沉积材料中慢分子动力学的初步探索。这些实验的结果表明,在低于玻璃化转变温度的温度下,平衡迁移率参数存在交叉现象,这是前所未有的发现,可能对开发精确的玻璃形成和失透理论框架具有重大影响。

著录项

  • 作者

    Cubeta, Ulyana Sorokopoud.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Physical chemistry.;Chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号