首页> 外文学位 >Fast Scanning Calorimetry Studies of Supercooled Liquids and Glasses.
【24h】

Fast Scanning Calorimetry Studies of Supercooled Liquids and Glasses.

机译:过冷液体和玻璃的快速扫描量热研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is a compilation of research results of extensive Fast Scanning Calorimetry studies of two non-crystalline materials: Toluene and Water.;Motivation for fundamental studies of non-crystalline phases, a brief overview of glassy materials and concepts and definitions related to them is provided in Chapter 1. Chapter 2 provides fundamentals and details of experimental apparata, experimental protocol and calibration procedure.;Chapter 3 & 4 provides extensive studies of stable non-crystalline toluene films of micrometer and nanometer thicknesses grown by vapor deposition at distinct deposition rates and temperatures and probed by Fast Scanning Calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor -deposited samples of toluene during heating with rates in excess 100,000 K/s follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics correlates with the surface roughness scale of the substrate, which is interpreted as evidence for kinetic anisotropy of the samples. We also show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited (VD) films of toluene are distinct from those of ordinary supercooled (OS) phase even when the deposition takes place at temperatures above the glass softening (Tg). The implications of these findings for the formation mechanism and structure of vapor deposited stable glasses are discussed.;Chapter 5 and 6 provide detailed Fast Scanning Calorimetry studies of amorphous solid water in bulk and confining geometry (ultrathin films and nano-aggregates). Bulk-like water samples were prepared by vapor-deposition on the surface of a tungsten filament near 140 K where vapor-deposition results in low enthalpy glassy water films. The vapor deposition approach was also used to grow nano-aggregates (2- 20 nm thick) and multiple ultrathin (approximately 50 nm thick) water films alternated with benzene and methanoic films of similar dimensions. When heated from cryogenic temperatures, the ultrathin water films underwent a well manifested glass softening transition at temperatures 20 degrees below the onset of crystallization. The thermograms of nano-aggregates of ASW films show two endotherms at 40 and 10 K below the onset temperatures of crystallization. However, no such transition was observed in bulk-like water samples prior to their crystallization. These results indicate that water in confined geometry demonstrates glass softening dynamics which are dramatically distinct from those of the bulk phase. We attribute these differences to water's interfacial glass transition which occurs at temperatures tens of degrees lower than that in the bulk. Implications of these finding for past studies of glass softening dynamics in various glassy water samples are discussed in chapter 5 and 6.
机译:本论文是对两种非结晶材料:甲苯和水的广泛快速扫描量热研究的研究结果的汇编;对非结晶相基础研究的动机,玻璃态材料及其相关概念和定义的简要概述如下:在第1章中提供。第2章提供了实验仪器的基本原理和详细信息,实验方案和校准程序。;第3和第4章广泛研究了通过气相沉积在不同的沉积速率和温度并通过快速扫描量热法进行探测。快速扫描量热法显示出对气相沉积的结构极为敏感,并用于同时表征其动力学稳定性和热力学性质。根据我们的分析,加热过程中气相沉积的甲苯样品以超过100,000 K / s的速率转变遵循零级动力学。根据亚线性定律,转化率与样品的初始焓密切相关,其随着沉积率的增加而增加。分析各种厚度的气相沉积的甲苯薄膜的转化动力学发现,薄于250 nm的薄膜的转化速率会突然增加。动力学变化与基材的表面粗糙度尺度相关,这被解释为样品动力学各向异性的证据。我们还表明,即使沉积发生在高于玻璃软化(Tg)的温度下,甲苯的非平衡弛豫动力学以及可能的甲苯汽化(VD)膜的焓也不同于普通的过冷(OS)相。 )。讨论了这些发现对气相沉积稳定玻璃的形成机理和结构的影响。第5章和第6章提供了详细的快速扫描量热法研究非晶态固体水的体积和约束几何形状(超薄膜和纳米聚集体)。通过在140 K附近的钨丝表面上进行气相沉积来制备块状水样品,其中气相沉积会导致低焓的玻璃状水膜。气相沉积方法还用于生长纳米聚集体(2至20 nm厚)和多个超薄水膜(约50 nm厚),并与相似尺寸的苯和甲烷膜交替出现。当从低温加热时,超薄水膜在低于结晶开始温度20度的温度下表现出明显的玻璃软化转变。 ASW薄膜纳米聚集体的热谱图在低于结晶起始温度40和10 K时显示出两个吸热峰。但是,在块状水样品结晶之前,没有观察到这种转变。这些结果表明,受限几何形状的水显示出玻璃软化动力学,这与本体相截然不同。我们将这些差异归因于水的界面玻璃化转变,该转变发生在比本体温度低几十度的温度下。在第五章和第六章中讨论了这些发现对过去在各种玻璃状水样中玻璃软化动力学研究的意义。

著录项

  • 作者

    Bhattacharya, Deepanjan.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Chemistry Physical.;Nanoscience.;Physics Low Temperature.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号