首页> 外文学位 >Scheduling strategies for real-time tasks in thermally constrained processing environments.
【24h】

Scheduling strategies for real-time tasks in thermally constrained processing environments.

机译:热约束处理环境中的实时任务的调度策略。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is motivated by rapid and increasing rise in power density of modern processing platforms. High power densities cause thermal hotspots which degrade reliability, performance, and efficiency of a system. The research in this dissertation aims to alleviate these temperature related problems in the context of real-time computing (systems where tasks have deadlines). Traditional temperature management strategies, such as Dynamic Voltage and Frequency Scaling (DVFS), cause performance degradation which may cause deadline violations in real-time systems. Depending on the criticality of a real-time system, deadline violations and other failures can have catastrophic consequences. Therefore, it is important to devise thermal management schemes specific to real-time systems; which is the subject of this dissertation. Real-time systems have been an active area of research for the past four decades. However, majority of research has focused on meeting deadline constraints of real-time tasks. Strong theoretical results for thermal feasibility of real-time tasks have been absent and current solutions are restrictive in terms of power model and solution strategies. In this dissertation, we counter these limitations and provide strong theoretical results pertinent to thermal feasibility of real-time tasks.;We propose the concepts of Thermal Impact/Utilization which are used to prove several important theoretical results. Specifically, we prove that thermal utilization of less than or equal to 1 is a necessary and sufficient condition for thermal feasibility of periodic real-time tasks on uni-core systems. This is similar to the computational feasibility condition proposed by Liu and Layland in 1973. Apart from periodic task scheduling, we also propose optimal scheduling algorithms for aperiodic tasks. In line with current architectural trends, the concept of Thermal Impact/Utilization is generalized to a multi-core processing platform and thermally optimal scheduling strategies for multi-core platforms are proposed. DVFS strategies are also proposed which enable further temperature reduction. We also evaluate the proposed multi-core solution on a hardware test-bed. The theoretical results, simulations and hardware evaluations show that the proposed concepts can be used to significantly reduce system temperature. The application of the proposed concepts to other application domains also has significant potential.
机译:本文的研究动机是现代处理平台功率密度的迅速提高。高功率密度会引起热点,从而降低系统的可靠性,性能和效率。本文的研究目的是在实时计算(任务有期限的系统)的情况下减轻与温度有关的问题。传统的温度管理策略,例如动态电压和频率缩放(DVFS),会导致性能下降,这可能会导致实时系统违反最终期限。根据实时系统的重要性,违反截止日期和其他故障可能会带来灾难性的后果。因此,设计针对实时系统的热管理方案非常重要。这是本论文的主题。在过去的四十年中,实时系统一直是研究的活跃领域。但是,大多数研究都集中在满足实时任务的截止日期约束上。缺乏针对实时任务的热可行性的强大理论结果,当前的解决方案在功率模型和解决方案策略方面受到限制。本文克服了这些局限性,提供了与实时任务的热可行性相关的强有力的理论结果。提出了热冲击/利用的概念,以证明其具有重要的理论意义。具体而言,我们证明了小于或等于1的热利用率是单核系统上定期实时任务的热可行性的必要和充分条件。这类似于Liu和Layland在1973年提出的计算可行性条件。除周期性任务调度外,我们还为非周期性任务提出了最优调度算法。顺应当前的架构趋势,将“热影响/利用”的概念推广到多核处理平台,并提出了针对多核平台的热优化调度策略。还提出了可以进一步降低温度的DVFS策略。我们还将在硬件测试平台上评估提出的多核解决方案。理论结果,仿真和硬件评估表明,所提出的概念可用于显着降低系统温度。所提出的概念在其他应用领域中的应用也具有巨大的潜力。

著录项

  • 作者

    Ahmed, Rehan.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Electronics and Electrical.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号