首页> 外文学位 >Development of a circulating fluidized bed reactor model for the fast pyrolysis of biomass for process simulation.
【24h】

Development of a circulating fluidized bed reactor model for the fast pyrolysis of biomass for process simulation.

机译:开发用于生物质快速热解的循环流化床反应器模型,用于过程模拟。

获取原文
获取原文并翻译 | 示例

摘要

Biomass fast pyrolysis is one of the possible methods for converting solid biomass into liquid fuels or chemicals. Obtaining liquid fuels (especially for transportation) from renewable sources is of increasing interest due to concerns about economics and environmental impact of using depleting fossil fuels. The viability of fast pyrolysis pathways to liquid fuels is typically assessed by performing system-wide techno-economic analyses (TEAs) of biorefineries. This analysis requires system models capable of predicting fast pyrolysis products and process energy requirements from different biomass feedstocks (chemical composition, alkali) and under different operating conditions (temperature, particle size, residence time). The TEA system models currently used are computationally simple and based on a small amount of experimental results which significantly limits their utility. The goal of this work is to develop an engineering reactor model for future integration with process simulations in order to gain a better understanding of the impact of fluid dynamics, heat transfer and reaction kinetics on the products yields and composition.;The current work addresses the issues of providing an engineering approximation of the effects of biomass composition variations, residence time and reaction temperature on pyrolysis process by incorporating the following features: (1) a flexible pyrolysis reaction mechanism inclusive of the catalytic effect of intrinsic contaminants, (2) one-dimensional, steady-state momentum balance for solids-gas flow, and (3) one-dimensional, steady-state energy equation. Simulation results regarding pyrolysis product yields are validated with the available experimental results and literature data. The fluid dynamics results are verified with the results from a transient, 2-D reactor model developed in MFIX. The simplifying assumptions related to the biomass particle geometry and properties are verified by comparison with simulation results from a 3-D, microstructure biomass particle model.;The results show that the two most influential parameters on product yields and composition are the reaction temperature and biomass composition. Changing the remaining operating parameters (besides reaction temperature and biomass feedstock) causes changes in velocity profiles, temperature profiles, point of reaction onset, and reaction rates. However, the final product yields at the reactor outlet remain unchanged provided that the residence time is sufficient for full conversion. The employed reaction model gives good predictions of product classes for the low ash content feedstocks such as pine, however it significantly overpredicts the organics yields from high ash content feedstocks. This is because the catalytic effect of intrinsic contaminants is not included in the reactions. Therefore, the reaction mechanism was corrected for potassium as a representative of the intrinsic contaminants in order to improve the predictive capabilities of the model from feedstocks with high ash content. Validation and verification efforts show that the temperature profiles, product yields and composition are in good agreement with higher order models and experimental data. However, the model overpredicts particle velocities and consequently underpredicts pressure drop, as the effect of particle clustering is not captured in the 1-D, steady-state flow representation. Therefore, a drag model adjustment is required for improved particle residence time predictions. The developed model provides valuable information about the temperature distribution, velocity profiles and species concentration profiles along the rector at a low computational cost and it offers better product predictions compared to the yield reactor models used in TEAs.
机译:生物质快速热解是将固体生物质转化为液体燃料或化学品的可能方法之一。由于对使用枯竭化石燃料的经济和环境影响的关注,从可再生资源获得液体燃料(特别是用于运输)的兴趣日益增加。快速热解路径转化为液体燃料的可行性通常通过对生物精炼厂进行系统范围的技术经济分析(TEA)进行评估。此分析需要系统模型,该模型能够预测来自不同生物质原料(化学成分,碱)和不同操作条件(温度,粒度,停留时间)的快速热解产物和过程能量需求。当前使用的TEA系统模型计算简单,并基于少量实验结果,这大大限制了它们的实用性。这项工作的目的是开发一个工程反应器模型,以便将来与过程仿真集成,以便更好地了解流体动力学,传热和反应动力学对产物收率和组成的影响。通过结合以下特征来提供对生物质组成变化,停留时间和反应温度对热解过程的影响的工程近似值的问题:(1)灵活的热解反应机制,包括固有污染物的催化作用,(2)固体气体流的三维稳态动量平衡,以及(3)一维稳态能量方程。有关热解产物产率的模拟结果已通过可用的实验结果和文献数据进行了验证。流体动力学结果已通过MFIX开发的瞬态二维反应器模型的结果进行了验证。通过与3-D微结构生物质颗粒模型的模拟结果进行比较,验证了与生物质颗粒的几何形状和性质有关的简化假设。结果表明,对产品收率和组成影响最大的两个参数是反应温度和生物量组成。改变其余操作参数(反应温度和生物质原料除外)会导致速度曲线,温度曲线,反应开始点和反应速率发生变化。但是,只要停留时间足以完全转化,则在反应器出口的最终产物产率保持不变。所采用的反应模型对低灰分原料(例如松树)的产品类别提供了良好的预测,但是,它大大高估了高灰分原料的有机物收率。这是因为固有污染物的催化作用不包括在反应中。因此,校正了反应机理,以钾作为内在污染物的代表,以提高灰分高的原料对模型的预测能力。验证和验证工作表明,温度曲线,产品收率和组成与高阶模型和实验数据高度吻合。但是,该模型高估了粒子速度,因此低估了压降,因为在1D稳态流表示中未捕获粒子聚集的影响。因此,需要进行阻力模型调整才能改善颗粒停留时间的预测。所开发的模型以较低的计算成本提供了有关沿反应器的温度分布,速度分布和物种浓度分布的有价值的信息,并且与TEA中使用的产率反应器模型相比,它提供了更好的产品预测。

著录项

  • 作者

    Trendewicz, Anna A.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Engineering Mechanical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号