首页> 外文学位 >Accurate prediction of unsteady and time-averaged pressure loads using a hybrid Reynolds-Averaged/large-eddy simulation technique.
【24h】

Accurate prediction of unsteady and time-averaged pressure loads using a hybrid Reynolds-Averaged/large-eddy simulation technique.

机译:使用混合雷诺平均/大涡流模拟技术准确预测非稳态和平均时间的压力负荷。

获取原文
获取原文并翻译 | 示例

摘要

Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions for the three-dimensional DES when compared to experiment. The initial results using the RANS and DES procedures compared well with experimental data for the wall-mounted hump as well. Using the RANS model, the onset of separation was accurately predicted while the reattachment point was over-predicted. The RANS procedure also over-predicted the mean pressure, skin friction, and velocity profiles in the separation zone. The DES procedure showed much better results for the secondary flow of a wing/endwall junction; the three-dimensional structures resolved in the wake of the DES improved the local flow physics in the separation region and the predictions of the mean pressure distribution, skin friction, and streamwise velocity. The DES procedure exhibited a three-dimensional ow structure in the wake, with a 13.65% shorter mean separation region compared to RANS and a mean reattachment length that is in good agreement with experimental measurements. DES predictions of the pressure coefficient in the separation region also exhibit good agreement with experiment and are more accurate than RANS predictions.
机译:在过去的几年中,已经进行了大量研究,以了解各种流体流动的不稳定空气动力学。这项工作大部分集中在量化不稳定的三维流场效应上,这已被证明对于准确预测许多流体和空气动力学问题至关重要。直到最近,工程师仍然主要依靠稳态模拟来分析固有的三维流动结构,这种流动在当今的许多“现实世界”问题中都很普遍。计算能力的提高和有效数值方法的发展可以改变这一点,并允许为实际的三维空气动力学应用求解不稳定的雷诺平均Navier-Stokes(RANS)方程。这种能力的重要组成部分是湍流模型的性能和准确性以及先进的并行计算技术。本报告首先进行了简短的文献调查,该调查概述了三维,不稳定,Navier-Stokes求解器在数值分析的当前状态中所扮演的角色。接下来,介绍了创建称为MBFLO3的基线三维多块FLOw过程的过程。然后介绍了无粘性的圆弧凸块,平板处的层流,层流圆柱体以及平板处的湍流的解决方案。结果表明与可用的实验,数值和理论数据吻合良好。给出了MBFLO3并行版本的可伸缩性数据,并显示在不少于100,000个计算网格点的过程中,效率达到90%或更高。接下来,介绍了用于几种湍流模型的描述和实现技术。在成功实施URANS和DES程序之后,给出了NACA 0012机翼,壁挂式驼峰和机翼-机体接合处几何形状上分离的,不重新附着的流动的验证数据。与实验相比,NACA 0012的结果显示了三维DES流量预测的显着改善。使用RANS和DES程序的初步结果也与壁挂式驼峰的实验数据进行了比较。使用RANS模型,可以准确预测分离的开始,而重新连接点则被过度预测。 RANS程序还高估了分离区内的平均压力,皮肤摩擦和速度曲线。 DES程序对机翼/端壁交界处的二次流动显示出更好的结果。 DES之后解析出的三维结构改善了分离区域的局部流动物理特性,并改善了平均压力分布,蒙皮摩擦和水流速度的预测。 DES程序在尾流中表现出三维流动结构,与RANS相比,平均分离区短了13.65%,平均重新连接长度与实验测量值非常吻合。分离区域内压力系数的DES预测与实验也显示出良好的一致性,并且比RANS预测更准确。

著录项

  • 作者

    Bozinoski, Radoslav.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号