首页> 外文学位 >Mating System Shifts and Transposable Element Evolution in Plants.
【24h】

Mating System Shifts and Transposable Element Evolution in Plants.

机译:植物的交配系统转变和可转座因子进化。

获取原文
获取原文并翻译 | 示例

摘要

Transposable elements (TEs) are mobile genetic elements that can self-replicate and insert elsewhere in the genome. This movement often comes with a fitness cost and yet TEs are tremendously common. They contribute more than 80% to the largest plant genomes, but are much less abundant in the smallest plant genomes. Combined, these observations raise the two central questions of this thesis. First, why are TEs so common, and the genomes so large, in some species but not others? Second, what prevents TEs from completely taking over and causing genomes to fail to produce functional individual organisms? In this thesis, I have used population and comparative genomics approaches on whole genome data from closely related plant species and syntheisising literature reviews to examine some of the evolutionary causes and consequences of TE proliferation in plants. In particular, I have investigated the role of mating system shifts, from outcrossing to self-fertilization and from sexual to asexual reproduction, in driving variation in TE abundance and genome size. I used the reference genome of Capsella rubella as an outgroup to show that the higher TE abundance and larger genome size of the outcrossing Arabidopsis lyrata compared to selfing A. thaliana is due to TE driven expansion in the outcrosser rather than genome loss in the selfer. I investigated three Capsella species of contrasting mating system and found that the evolution of self-fertilization may have different effects on TE evolution on short and on long timescales. I applied a phylogenetic comparative approach and whole genome sequencing to demonstrate that sex and TEs cannot explain the variation in genome size in evening primroses (Oenothera). Using transcriptome data I showed that the chromosomal distribution (sex chromosomes vs. autosomes) of nuclear gene with organellar origin in Rumex hastatulus is not consistent with either co-adaptation or sexual conflict hypotheses. Finally, I showed that studying the proliferation of TEs offers insights to the cardinal problem of social evolution of what prevents selfish behaviour at lower levels from destroying functionality of the group. Overall, my thesis is a contribution to understanding the evolutionary causes and consequences of TE proliferation.
机译:转座因子(TEs)是可以自动复制并插入基因组其他位置的移动遗传元件。这种运动通常会带来健身费用,但TE极为普遍。它们对最大的植物基因组的贡献超过80%,但是在最小的植物基因组中的丰富程度要低得多。结合起来,这些观察提出了本论文的两个核心问题。首先,为什么在某些物种中TE如此常见,而基因组如此之大?第二,是什么阻止TE完全接管并导致基因组无法产生功能性个体生物?在本文中,我使用了种群和比较基因组学方法对来自密切相关植物物种的全基因组数据进行了研究,并综合了文献综述,以研究植物中TE增殖的一些进化原因和后果。特别是,我研究了交配系统转变(从异交繁殖到自我受精以及从有性繁殖到无性繁殖)在驱动TE丰度和基因组大小变异中的作用。我将小s菜的参考基因组作为一个整体进行了研究,结果表明与自交拟南芥相比,异交拟南芥的拟南芥具有更高的TE丰度和更大的基因组大小,这是由于自交杂交中TE驱动的扩增而不是自交者的基因组损失。我研究了三种对比交配的Capsella物种,发现自受精的进化可能在短期和长期内对TE进化产生不同的影响。我应用了系统发育比较方法和全基因组测序来证明性别和TE不能解释月见草(Oenothera)中基因组大小的变化。使用转录组数据,我显示了Rumex hastatulus中具有细胞器起源的核基因的染色体分布(性染色体与常染色体)与共适应或性冲突假设均不一致。最后,我表明研究TE的扩散为社会进化的基本问题提供了见解,这些问题阻止了较低层级的自私行为破坏组织的功能。总体而言,我的论文对理解TE增殖的进化原因和后果做出了贡献。

著录项

  • 作者

    Agren, J. Arvid.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Evolution development.;Plant sciences.;Genetics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号