首页> 外文学位 >Univel-based computational geometric modeling using high-dimensional material types with application to Monte Carlo nuclear particle transport.
【24h】

Univel-based computational geometric modeling using high-dimensional material types with application to Monte Carlo nuclear particle transport.

机译:基于Univel的使用高维材料类型的计算几何建模,并应用于蒙特卡洛核粒子传输。

获取原文
获取原文并翻译 | 示例

摘要

Computer graphics and geometric modeling often use unstructured surface meshes to define objects. This can result in complex, time-expensive calculations to simulate surface interactions when simulating physical processes or rendering images. This thesis describes a computational geometric model based on discrete uniform- volume elements (univels), and applies this approach to well-known problem: using the Monte Carlo method to simulate the transport physics of neutral particles (neu- trons and photons) through complex geometric models.;The most consequential product of this work is Juniper, a comprehensive trans- port modeling software system useful for both practical applications and experimental research in particle transport.;Using a structured Cartesian grid of univels has several promising advantages: tracking particles through a univel grid is known to be much faster than alternative geometries. And univel-based particle tracking is particularly insensitive to the com- plexity of the geometric model. To use these advantages Juniper must rasterize the input model into univels.;Antialiasing is a well-known technique in computer graphics to reduce the visual impact of discretization artifacts. In existing graphics applications this is almost entirely done with three-dimensional color vectors. Juniper is designed to explore antialiasing the geometry univelization, while developing novel ways to cope with high-dimensionality material vectors.;Antialiasing creates blended vectors near high-frequency information areas of the rasterization grid. When the grid is an image the vectors are on a three-dimensional color space and can often be stored and interpreted directly. But for particle transport the univel values are high-dimensionality material vectors. An exact representation of their blended forms yields impractically large model sizes. Instead, these vectors can be quantized to a manageable set of prototype vectors, reducing the univel grid to a table of indices. The quantized material vectors retain the computational advan- tages of univelized particle transport while potentially improving the fidelity of the transport results.;Exploring this problem has provided new insights into digitization of high- dimensional values, effects of univel size on transport result accuracy, and the an- tialiasing of high-dimensional vector spaces. A new library of carefully defined high- precision cargo object models in a universal format (XML) is another result.
机译:计算机图形学和几何建模经常使用非结构化的表面网格来定义对象。在模拟物理过程或渲染图像时,这可能会导致复杂,费时的计算来模拟表面相互作用。本文描述了一种基于离散均匀体积元素(单分子)的计算几何模型,并将这种方法应用于一个众所周知的问题:使用蒙特卡洛方法来模拟中性粒子(中子和光子)在复合物中的传输物理学。几何模型;这项工作最重要的产品是瞻博网络,这是一个全面的运输建模软件系统,可用于粒子运输的实际应用和实验研究。;使用统一的结构化笛卡尔网格具有多个有希望的优势:众所周知,Univel网格比其他几何形状要快得多。基于univel的粒子跟踪对几何模型的复杂性特别不敏感。要利用这些优点,瞻博网络必须将输入模型栅格化为整体。抗锯齿是计算机图形学中一种众所周知的技术,可以减少离散化伪像的视觉影响。在现有的图形应用程序中,这几乎完全用三维颜色矢量完成。瞻博网络旨在探索抗锯齿的几何统一化,同时开发出应对高维材料矢量的新方法。抗锯齿可在栅格化网格的高频信息区域附近创建混合矢量。当网格是图像时,矢量位于三维颜色空间中,通常可以直接存储和解释。但是对于粒子传输,univel值是高维材料矢量。精确表示其混合形式会产生不切实际的大模型尺寸。相反,可以将这些向量量化为一组易于管理的原型向量,从而将Univel网格简化为索引表。量化的材料矢量保留了统一粒子传输的计算优势,同时潜在地提高了传输结果的保真度。探索此问题为高维值的数字化,统一尺寸对传输结果精度的影响和提供了新的见解。高维向量空间的解析。另一个结果是建立了一个新的库,该库以通用格式(XML)精心定义了高精度货物对象模型。

著录项

  • 作者

    Hall, Aaron David.;

  • 作者单位

    Montana State University.;

  • 授予单位 Montana State University.;
  • 学科 Computer science.;Nuclear physics and radiation.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号