首页> 外文学位 >Fabrication de structures tridimensionnelles de nanocomposites polymeres charges de nanotubes de carbone a simple paroi.
【24h】

Fabrication de structures tridimensionnelles de nanocomposites polymeres charges de nanotubes de carbone a simple paroi.

机译:载有单壁碳纳米管的聚合物纳米复合材料三维结构的制造。

获取原文
获取原文并翻译 | 示例

摘要

There is currently a worldwide effort for advances in micro and nanotechnologies due to their high potential for technological applications in fields such as microelectromechanical systems (MEMS), organic electronics and structural microstructures for aerospace. In these applications, carbon nanotube/polymer nanocomposites represent interesting material options compared to conventional resins for their enhanced mechanical and electrical properties. However, several significant scientific and technological challenges must first be overcome in order to rapidly and cost-effectively fabricate nanocomposite-based microdevices. Fabrication techniques have emerged for fabricating one- of two-dimensional (1D/2D) nanocomposite structures but few techniques are available for three-dimensional (3D) nanocomposite structures. The overall objective of this thesis is the development of a manufacturing technique allowing the fabrication of 3D structures of single-walled carbon nanotube (C-SWNT)/polymer nanocomposite.;The C-SWNT material is produced by laser ablation of a graphite target and purified using a nitric acid reflux. The as-grown and purified material is characterized under transmission electron microscopy and Raman spectroscopy. The purification procedure successfully graphed carboxylic groups on the surface of the C-SWNTs, shown by X-ray photoelectron spectroscopies. An incorporation procedure in the polymer is developed involving a non-covalent functionalization of the nanotubes by zinc protoporphyrin IX molecule and high shear mixing using a three-roll mill. The incorporation of the C-SWNTs into the resin led to an increase of the viscosity and the apparition of a shear thinning behaviour, characterized by capillary viscometry.;The nanocomposite UV-curing behavior is characterized under differential scanning calorimetry coupled with a UV source. A further adjustment of the shear thinning behavior using fumed silica enabled the UV-DW fabrication of microbeams. Mechanical characterization reveals significant increase in both strength (by ∼64%) and modulus (by more than 15 times). These mechanical enhancements are attributed to both the covalent and the non-covalent functionalizations of the C-SWNTs. Nanocomposite spring networks composed of three micro-coils fabricated using the UV-DW technique are mechanically tested under compression and show a rigidity of ∼11.5 mN/mm. A micro-coil is also deposited between two uneven electrodes and a 10-6 S/cm electrical conductivity is measured. Nanocomposite scaffold structures are also deposited using the UV-DW technique.;This thesis also reports the fabrication of 3D micro structured beams reinforced with the C-SWNT/polymer nanocomposite by using an approach based on the infiltration of 3D microfluidic networks. The 3D microfluidic network is first fabricated by the direct-write assembly method, which consists of the robotized deposition of fugitive ink filaments on an epoxy substrate, forming a 3D micro structured scaffold. After encapsulating the 3D micro-scaffold structure with an epoxy resin, the fugitive ink is liquefied and removed, resulting in a 3D network of interconnected microchannels. This microfluidic network is then infiltrated by the C-SWNT/polyurethane nanocomposite and subsequently cured. The final samples consist of rectangular beams having a complex 3D-skeleton structure of C-SWNT/polyrner nanocomposite fibers, adapted to offer better performance under flexural solicitation. Dynamic mechanical analysis in flexion show an increase of 12.5% in the storage modulus under 35°C compared to the resin infiltrated beams.;This thesis reports the development of a direct-write fabrication technique that greatly extends the fabrication space for 3D carbon nanotube/polymer nanocomposite structures. The UV-assisted direct-write (UV-DW) technique employs the robotically-controlled micro-extrusion of a nanocomposite filament combined with a UV exposure that follows the extrusion point. Upon curing, the increased rigidity of the extruded filament enables the creation of multi-directional shapes along the trajectory of the extrusion point.;The manufacturing techniques demonstrated here, i.e. UV assisted direct writing and the infiltration of 3D microfluidic networks, open new prospects for the achievement of 3D reinforced micro structures that could find application in organic electronics, MEMS, sensor, tissue engineering scaffolds and aerospace.
机译:由于微技术和纳米技术在诸如微机电系统(MEMS),有机电子学和航空航天结构微结构等领域的技术应用的巨大潜力,因此目前在全球范围内努力发展。在这些应用中,与常规树脂相比,碳纳米管/聚合物纳米复合材料因其增强的机械和电性能而成为有趣的材料选择。但是,必须首先克服几个重大的科学和技术挑战,以便快速,经济高效地制造基于纳米复合材料的微器件。已经出现了用于制造二维(1D / 2D)纳米复合结构之一的制造技术,但是很少有技术可用于三维(3D)纳米复合结构。本论文的总体目标是开发一种制造技术,以制造3D结构的单壁碳纳米管(C-SWNT)/聚合物纳米复合材料。C-SWNT材料是通过激光烧蚀石墨靶材和用硝酸回流纯化。生长和纯化的材料在透射电子显微镜和拉曼光谱下表征。纯化程序成功地绘制了C-SWNTs表面的羧基图,如X射线光电子能谱所示。开发了聚合物中的掺入程序,包括通过原卟啉IX分子对纳米管进行非共价官能化并使用三辊磨机进行高剪切混合。 C-SWNTs掺入到树脂中导致了粘度的增加和剪切稀化行为的出现,其特征是毛细管粘度法。纳米复合材料的紫外固化行为是在差示扫描量热法和紫外光源的共同作用下表征的。使用气相法二氧化硅对剪切稀化行为的进一步调节使得能够进行微束的UV-DW制备。力学性能表明强度(约64%)和模量(超过15倍)均显着增加。这些机械增强作用归因于C-SWNT的共价和非共价官能化。纳米复合弹簧网络由使用UV-DW技术制成的三个微线圈组成,在压缩条件下进行了机械测试,其刚性约为11.5 mN / mm。微线圈也沉积在两个不平坦的电极之间,并测量出10-6 S / cm的电导率。纳米复合材料的支架结构也可以通过UV-DW技术沉积。本论文还报道了通过基于3D微流体网络渗透的方法制备了由C-SWNT /聚合物纳米复合材料增强的3D微结构梁。 3D微流体网络首先通过直接写入组装方法制造,该方法包括将逃逸性墨水丝自动沉积在环氧树脂基材上,形成3D微结构支架。用环氧树脂封装3D微支架结构后,逃逸墨水被液化并去除,从而形成了互连微通道的3D网络。然后,该微流体网络被C-SWNT /聚氨酯纳米复合材料渗透并随后固化。最终的样品由具有C-SWNT / polyrner纳米复合纤维的复杂3D骨架结构的矩形梁组成,适用于在弯曲拉伸下提供更好的性能。弯曲时的动态力学分析表明,与树脂渗透束相比,在35°C下的储能模量增加了12.5%。;本论文报告了直写制造技术的发展,该技术极大地扩展了3D碳纳米管/的制造空间聚合物纳米复合结构。 UV辅助直接写入(UV-DW)技术采用了纳米复合材料长丝的机器人控制的微挤出技术,并结合了跟随挤出点的UV曝光。固化后,被挤出的长丝提高了刚度,因此可以沿着挤出点的轨迹创建多方向的形状。此处展示的制造技术,即紫外线辅助的直接书写和3D微流体网络的渗透,为开辟了新的前景3D增强微结构的成就,可以在有机电子,MEMS,传感器,组织工程支架和航空航天中找到应用。

著录项

  • 作者

    Laberge Lebel, Louis.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Plastics Technology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号