首页> 外文学位 >Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics.
【24h】

Characterization and Application of Colloidal Nanocrystalline Materials for Advanced Photovoltaics.

机译:先进光伏胶体纳米晶体材料的表征和应用。

获取原文
获取原文并翻译 | 示例

摘要

Solar energy is Earth's primary source of renewable energy and photovoltaic solar cells enable the direct conversion of sunlight into electricity. Crystalline silicon solar cells and modules have dominated photovoltaic technology from the beginning and they now constitute more than 90% of the PV market. Thin film (CdTe and CIGS) solar cells and modules come in second position in market share. Some organic, dye-sensitized and perovskite solar cells are emerging in the market but are not yet in full commercial scale. Solar cells made from colloidal nanocrystalline materials may eventually provide both low cost and high efficiency because of their promising properties such as high absorption coefficient, size tunable band gap, and quantum confinement effect. It is also expected that the greenhouse gas emission and energy payback time from nanocrystalline solar PV systems will also be least compared to all other types of PV systems mainly due to the least embodied energy throughout their life time.;The two well-known junction architectures for the fabrication of quantum dot based photovoltaic devices are the Schottky junction and heterojunction. In Schottky junction cells, a heteropartner semiconducting material is not required. A low work function metal is used as the back contact, a transparent conducting layer is used as the front contact, and the layer of electronically-coupled quantum dots is placed between these two materials. Schottky junction solar cells explain the usefulness of nanocrystalline materials for high efficiency heterojunction solar cells. For heterojunction devices, n-type semiconducting materials such as ZnO , CdS or TiO2 have been used as suitable heteropartners.;Here, PbS quantum dot solar cells were fabricated using ZnO and CdS semiconductor films as window layers. Both of the heteropartners are sputter-deposited onto TCO coated glass substrates; ZnO was deposited with the substrate held at room temperature and for CdS the substrate was at 250 °C. Within this work, CdS was demonstrated for the first time as the heteropartner for a quantum dot absorber layer. Iron pyrite nanocrystal (NC) could not be used as an absorber layer in thin film solar cells because the material's very high free hole density rendered it nearly metallic in nature. However, the author discovered and demonstrated that an iron pyrite nanocrystal film functions well as a back contact buffer layer for CdTe solar cells. Performance of CdTe devices when using FeS2/Au as back contact approaches that of a laboratory standard Cu/Au back contact.
机译:太阳能是地球上可再生能源的主要来源,光伏太阳能电池使阳光直接转化为电能。晶体硅太阳能电池和模块从一开始就主导了光伏技术,现在它们构成了光伏市场的90%以上。薄膜(CdTe和CIGS)太阳能电池和模块在市场份额中排名第二。一些有机的,染料敏化的和钙钛矿型的太阳能电池正在市场上出现,但尚未达到完整的商业规模。由胶体纳米晶体材料制成的太阳能电池由于其有希望的特性(例如高吸收系数,尺寸可调带隙和量子限制效应)而最终可以提供低成本和高效率。还预计与所有其他类型的光伏系统相比,纳米晶太阳能光伏系统的温室气体排放和能源回收时间也将最少,这主要是由于在其整个生命周期内体现的能量最少。两种著名的结体系结构用于制造基于量子点的光伏器件的是肖特基结和异质结。在肖特基结单元中,不需要异质伴侣半导体材料。低功函数金属用作后触点,透明导电层用作前触点,电子耦合量子点层放置在这两种材料之间。肖特基结太阳能电池解释了纳米晶材料对高效异质结太阳能电池的有用性。对于异质结器件,已将ZnO,CdS或TiO2等n型半导体材料用作合适的异质结材料。在此,以ZnO和CdS半导体膜作为窗口层来制造PbS量子点太阳能电池。两种异氰酸酯均被溅射沉积在涂有TCO的玻璃基板上。沉积ZnO时将基板保持在室温,对于CdS,基板处于250°C。在这项工作中,CdS首次被证明是量子点吸收层的异质伙伴。黄铁矿纳米晶体(NC)不能用作薄膜太阳能电池的吸收层,因为该材料的很高的自由空穴密度使其本质上接近于金属。然而,作者发现并证明了黄铁矿纳米晶体膜可以很好地用作CdTe太阳能电池的背接触缓冲层。当使用FeS2 / Au作为背触点时,CdTe器件的性能接近实验室标准的Cu / Au背触点。

著录项

  • 作者

    Bhandari, Khagendra P.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Materials science.;Nanoscience.;Energy.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 392 p.
  • 总页数 392
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号