首页> 外文学位 >Period Robustness Analysis of Minimal Models for Biochemical Oscillators.
【24h】

Period Robustness Analysis of Minimal Models for Biochemical Oscillators.

机译:生化振荡器最小模型的周期稳健性分析。

获取原文
获取原文并翻译 | 示例

摘要

Mathematical modeling is a sophisticated method that facilitates the analysis and understanding of complex biological systems, for example, oscillatory systems. In biology, oscillatory systems are found in numerous species ranging from calcium oscillations to circadian rhythms. These oscillators, of autonomous nature, contain complex feedback mechanisms ruled by molecular interactions that determine the physiology and enable spontaneous oscillations. Although previous results using both experimental and theoretical approaches have revealed core molecular network topologies and conditions that allow autonomous oscillations, many important questions remain elusive.;In this thesis, we investigate five different minimal models that may underlie fundamental molecular processes in biological oscillatory systems. We focus on dynamical differences and period maintenance of the models. In particular, we introduce two types of noises into these minimal models and perform numerical bifurcation and period sensitivity analyses.;Our results demonstrate that small wiring modifications lead to substantial dynamical changes and the oscillatory domain is enlarged in models that involve a positive feedback mechanism including a reversible reaction. Additionally, the outcomes from sensitivity analysis in the presence of external or internal noises reveal different rankings in the hierarchy of period robustness of the five minimal models. Ranking of the models is determined by the number of highly sensitive parameters, network topology and/or noise strength. Finally, we demonstrate that minimal models including positive feedback via autocatalysis are more robust than those where positive feedback is exerted through inhibition of degradation regardless of the noise type.;This investigation will be useful to analyze fundamental molecular mechanisms of different biological oscillators. We admit that characteristics of minimal models may be too simple for modeling a detailed behavior of complex biological oscillators. However, our data indicate that these minimal models may be used as building blocks for biochemical oscillators of greater complexity using synthetic biology.
机译:数学建模是一种复杂的方法,可帮助分析和理解复杂的生物系统,例如振荡系统。在生物学中,从钙振荡到昼夜节律的众多物种中都发现了振荡系统。这些具有自发性的振荡器包含复杂的反馈机制,该机制由分子相互作用决定,这些相互作用决定了生理学并实现了自发振荡。尽管先前使用实验和理论方法得出的结果都揭示了允许自主振荡的核心分子网络拓扑结构和条件,但许多重要的问题仍然难以捉摸。在本论文中,我们研究了可能构成生物振荡系统基本分子过程基础的五个不同最小模型。我们关注模型的动态差异和周期维护。尤其是,我们在这些最小模型中引入了两种类型的噪声,并进行了数值分叉和周期灵敏度分析。;我们的结果表明,在涉及正反馈机制的模型中,小的布线修改会导致较大的动态变化,并且振荡域会扩大可逆的反应。此外,在存在外部或内部噪声的情况下进行敏感性分析的结果揭示了五个最小模型的周期稳健性等级中的不同等级。模型的排名取决于高度敏感的参数数量,网络拓扑和/或噪声强度。最后,我们证明了包括通过自动催化的正反馈在内的最小模型比那些通过抑制降解施加正反馈而不受噪声类型影响的最小模型更为稳健。该研究将有助于分析不同生物振荡器的基本分子机理。我们承认,最小模型的特征对于建模复杂的生物振荡器的详细行为可能过于简单。但是,我们的数据表明,这些最小模型可以用作使用合成生物学的复杂性更高的生化振荡器的基础。

著录项

  • 作者

    Caicedo Casso, Angelica G.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Applied mathematics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号