首页> 外文学位 >Holographic photopolymer structures and applications.
【24h】

Holographic photopolymer structures and applications.

机译:全息光敏聚合物的结构和应用。

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale optical technology is a breathtaking field. The interest in using nanostructure stems in different fields like mechanical, electrical, biochemical and optical is because of their potential superior properties. Our goal is to find new techniques to design and fabricate novel micro and nano structures that are cost efficient and easy to fabricate. Particularly, this thesis concentrates on the design, fabrication and characterization of holographic writing of reflection gratings for different purposes and applications.;The development of periodic nanostructured materials with precise optical assets can extensively impact the growth of optical based sensors. Furthermore, the fabrication of these structures in low-cost polymer systems can decrease the price of these methods which are associated with spectral analysis and color filtering. For instance, reflective Bragg filters can be generated by fabricating a multilayered polymer based structure with a modulated refractive index profile. One technique to generate this kind of periodic structure is the holographic lithography method.;During past decades, there has been major study through laser based holography technique to control the size and location of nanoscale droplets of liquid crystals in a polymer based structure [1]. The development of holographic gratings from polymer dispersed liquid crystals (H-PDLCs) enables the generation of transmission and reflection gratings. These patterns are created by the interference of a coherent laser beam inside a polymer syrup that contains a liquid crystal, a photoreactive monomer and a photoinitiator.;In chapter one, we introduce the holographic lithography technique and present the properties of the chemical components of the pre-polymer syrup that is used in this dissertation. In chapter two, we describe the fabrication set-up for transmission and reflection gratings. Also, the standard H-PDLC material systems are modified and optimized to meet precise specifications like high resolution and high reflection intensity in the spectrum. A variety of solvent concentrations and fabrication conditions are compared to verify their effects on the resulting optical performance. Particularly, we characterize and study the morphologies of the fabricated polymeric gratings in terms of optical reflection and transmission, surface and cross-section morphologies and thickness variations.;Chapter three presents a single beam one-step holographic interferometry technique to create porous polymer structures with controllable pore dimension and position to produce compact graded photonic bandgap structures for linear variable optical filters. By presenting a forced internal reflection patterning, we enhance the blue region reflection peaks to over 80% and achieve a high, stable and uniform optical reflection for the visible wavelength region. Additionally by optimizing the power density, we improve the resolution.;A new method of fabricating low cost spectrometers which not only detect the visible optical wavelengths but can also detect ultraviolet (UV) and near infrared light (NIR) is presented in chapter four. In this chapter, we extend this visible graded grating into a double-band rainbow-colored structure based on the second-order Bragg diffraction. We demonstrate a method which can achieve a uniformly high performance rainbow grating that can cover a spectrum wavelength range from 350 nm to 900 nm.;Chapter five demonstrates a technique of fabricating a 3D PBG structures in a large scale area by combining holographic lithography and pinholes. Different patterns are illustrated and the morphologies of the samples are presented.;The closing chapter, chapter six, provides a summary of the work accomplished in this thesis and presents some ideas for the future direction of studies. We demonstrate a technique to fabricate an array of a dye-doped H-PDLC graded reflection grating which is useful for biosensing applications. Another major research goal that we work on is designing and presenting a fabrication method for 1D and 2D metamaterial structures in a large scale area by using the holographic lithography method.
机译:纳米光学技术是一个惊人的领域。由于它们具有潜在的优越性能,因此在诸如机械,电气,生化和光学等不同领域中使用纳米结构杆的兴趣。我们的目标是找到新技术,以设计和制造经济高效且易于制造的新型微米和纳米结构。特别地,本论文集中于针对不同目的和应用的反射光栅的全息写法的设计,制造和表征。具有精确光学资产的周期性纳米结构材料的发展会极大地影响基于光学的传感器的增长。此外,在低成本聚合物系统中制造这些结构可以降低与光谱分析和颜色过滤相关的这些方法的价格。例如,可以通过制造具有调制的折射率分布的多层聚合物基结构来产生反射布拉格滤波器。全息光刻技术是产生这种周期性结构的一种技术。在过去的几十年中,通过基于激光的全息技术来控制基于聚合物的结构中液晶的纳米级液滴的尺寸和位置已有大量研究[1]。 。由聚合物分散液晶(H-PDLC)开发的全息光栅可以产生透射和反射光栅。这些图案是由包含液晶,光反应性单体和光引发剂的聚合物浆液中相干激光束的干涉所产生的。在第一章中,我们介绍了全息光刻技术并介绍了其化学成分的性质。本论文使用的预聚物糖浆。在第二章中,我们描述了透射和反射光栅的制造设置。同样,对标准H-PDLC材料系统进行了修改和优化,以满足诸如光谱中的高分辨率和高反射强度之类的精确规格。比较了各种溶剂浓度和制造条件,以验证它们对所得光学性能的影响。特别是,我们从光学反射和透射,表面和横截面的形貌以及厚度变化方面表征和研究了制成的聚合物光栅的形貌。第三章介绍了一种单束一步​​全息干涉技术,以制造具有多孔结构的多孔聚合物结构。可控制的孔尺寸和位置,以生产用于线性可变光学滤波器的紧凑渐变光子带隙结构。通过呈现强制的内部反射图案,我们将蓝色区域的反射峰增强到80%以上,并为可见波长区域实现了高,稳定和均匀的光学反射。此外,通过优化功率密度,我们提高了分辨率。第四章介绍了一种制造低成本光谱仪的新方法,该光谱仪不仅可以检测可见光波长,还可以检测紫外线(UV)和近红外光(NIR)。在本章中,我们将这种可见的渐变光栅扩展为基于二阶布拉格衍射的双波段彩虹色结构。我们演示了一种可以实现均匀高性能彩虹光栅的方法,该光栅可以覆盖从350 nm到900 nm的光谱波长范围;第五章演示了通过结合全息光刻和针孔在大面积区域中制造3D PBG结构的技术。最后,第六章对本论文完成的工作进行了总结,并为今后的研究方向提供了一些思路。我们展示了一种技术,该技术可用于制造染料掺杂的H-PDLC渐变反射光栅阵列,该阵列可用于生物传感应用。我们正在研究的另一个主要研究目标是通过全息光刻方法设计并提出一种用于大面积区域的一维和二维超材料结构的制造方法。

著录项

  • 作者

    Moein, Tania.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号