首页> 外文学位 >Development of inversion-based feedforward-feedback control techniques for advanced manufacturing.
【24h】

Development of inversion-based feedforward-feedback control techniques for advanced manufacturing.

机译:开发用于先进制造的基于反转的前馈-反馈控制技术。

获取原文
获取原文并翻译 | 示例

摘要

Advanced manufacturing aims to make high-quality products at low cost with high efficiency and highly integrated/controlled processes, thereby, promoting the process integration and providing accommodation of customized and cost-effective miniaturized products. With the increasing demands on product precision and cost efficiency in micro- and nano-scale manufacturing, the development and implementation of control technologies have become an indispensable part of advanced manufacturing. However, challenges exist in the process control of micro- and nano-scale manufacturing. The system dynamics, in general, is complicated and can be excited when the micro- and nano-manufacturing are conducted at high speeds, and other adverse effects including the hysteresis and creep effects of the actuators further complicates the precision control of the manufacturing system. Additional challenges also arise from the variation/uncertainty and environmental disturbances. It has been demonstrated that micromanufacturing could benefit from the augment of ultrasonic vibration in achieving lower power consumptions and elongated tool life. However, the fundamental mechanism of ultrasonic vibration effect on micromanufacturing has not yet been understood. Similar challenges also exist in probe-based nanomanufacturing as the patterning throughput is ultimately limited by the patterning speed, which, in turn, is limited by the vibrational dynamics and hysteresis effect, as well as the cross-axis dynamics coupling effect of the actuation system. Further challenge arises when patterning directly on hard materials using probe-based approach --- even with stiff probe of hardest material, the pattern obtained on hard sample such as tungsten is hardly of any practical usage (feature depth < 0.5 nm). These challenges in micro- and nano-manufacturing motivate the research in this dissertation.;In this dissertation, the dynamics and hysteresis effect are studied and addressed for the magnetostrictive actuator-based ultrasonic-vibration-assisted microforming process and probe-based nanofabrication with an atomic force microscope (AFM). In particular, a magnetostrictive actuator-based mechatronic system is developed for the ultrasonic-vibration-assisted microforming process. The modeling-free inversion-based iterative learning control method (MIIC) is utilized to compensate for the dynamics and hysteresis effect on the ultrasonic vibration generation across a large range of working frequency. The Fibonacci method is utilized to rapidly identify the resonant frequency online for more pronounced ultrasonic vibration effect. To address the backlash and relatively low resolution of the DC-motor, a bulk motion actuation system is designed and fabricated with a mechanical amplification around a magnetostrictive actuator. Such a design allows the bulk motion for large output force and motion stroke with high resolution (< 1 um). The entire microforming process is divided into pre-welding and welding phases. During the pre-welding phase, the data-driven, modeling-free differential-inversion-based iterative control (MFDIIC) approach is developed to address the dynamics and the hysteresis effect of the magnetostrictive actuator for high efficiency. The inversion-based optimal output tracking-transition method is employed to realize the accuracy transition from the pre-welding to the welding phase, and thus improves the product quality. In the study of the probe-based nanofabrication, the MFDIIC method is also utilized and integrated to address the adverse dynamics effect and the hysteresis behaviour of the piezoactuators. An ultrasonic vibration is also augmented in the driving of the piezoactuator in z- axis to increase the impact of the probe and enables the patterning on hard materials.;The MFDIIC technique is further analyzed and theoretically proved of its efficiency in compensating for both of the dynamics and nonlinear hysteresis effects with no needs for modeling hysteresis and/or dynamics, and achieve both precision tracking and good robustness against hysteresis/dynamics changes. The convergence of the MFDIIC algorithm is analyzed with random output disturbance/noise considered. It is shown that precision tracking can be achieved with the tracking error close to the noise level in the statistical sense.
机译:先进制造旨在以低成本,高效率和高度集成/受控的过程来生产高质量的产品,从而促进过程集成并提供定制的和具有成本效益的小型化产品。随着对微米和纳米级制造中产品精度和成本效率的日益增长的要求,控制技术的开发和实施已成为高级制造中不可或缺的一部分。然而,在微米和纳米级制造的过程控制中存在挑战。通常,当进行微细加工和纳米加工时,系统动力学很复杂,并且会被激发,而其他不利影响(包括致动器的滞后和蠕变效应)进一步使制造系统的精度控制变得更加复杂。变化/不确定性和环境干扰也带来了其他挑战。已经证明,微制造可以受益于超声振动的增强,从而实现更低的功耗和更长的工具寿命。然而,超声振动作用于微制造的基本机理尚未被理解。在基于探针的纳米制造中也存在类似的挑战,因为图案化的生产量最终受到图案化速度的限制,而图案化速度又受到振动动力学和磁滞效应以及驱动系统的跨轴动力学耦合效应的限制。 。当使用基于探针的方法直接在硬质材料上构图时,还会遇到进一步的挑战-即使使用最硬的硬质探针,在硬样品(如钨)上获得的图案也几乎没有任何实际用途(特征深度<0.5 nm)。微观和纳米制造中的这些挑战推动了本文的研究。本论文研究并研究了基于磁致伸缩致动器的超声振动辅助微成形工艺和基于探针的纳米加工的动力学和磁滞效应。原子力显微镜(AFM)。特别是,开发了一种基于磁致伸缩执行器的机电系统,用于超声振动辅助的微成型过程。基于建模的无反演迭代学习控制方法(MIIC)用于补偿在较大工作频率范围内对超声振动产生的动力学和磁滞效应。斐波那契方法用于在线快速识别共振频率,以获得更明显的超声振动效果。为了解决直流电动机的反冲和相对较低的分辨率,设计并制造了具有磁致伸缩致动器周围的机械放大的整体运动致动系统。这种设计允许大运动产生较大的输出力和高分辨率(<1 um)的运动行程。整个微成型过程分为预焊接和焊接阶段。在预焊接阶段,开发了基于数据驱动,无模型的基于微分求逆的迭代控制(MFDIIC)方法,以解决磁致伸缩执行器的动力学和磁滞效应,从而提高效率。采用基于反转的最优输出跟踪过渡方法,实现了从预焊接到焊接阶段的精度过渡,从而提高了产品质量。在基于探针的纳米加工的研究中,MFDIIC方法也得到了利用和集成,以解决压电致动器的不利动力学效应和磁滞行为。在压电致动器沿z轴的驱动中,超声波振动也会增强,以增加探针的冲击力,并能在硬质材料上进行构图。MFDIIC技术得到了进一步的分析,并从理论上证明了其在补偿两种情况下的效率。动态和非线性磁滞效应,无需对磁滞和/或动力学建模,并实现了精确的跟踪和对磁滞/动态变化的良好鲁棒性。在考虑了随机输出干扰/噪声的情况下分析了MFDIIC算法的收敛性。结果表明,在统计意义上,跟踪误差可以接近噪声水平,从而可以实现精确的跟踪。

著录项

  • 作者

    Wang, Zhihua.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Mechanical engineering.;Automotive engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号