首页> 外文学位 >Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries.
【24h】

Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries.

机译:用于高级锂和钠电池的有机阳极和硫/硒阴极。

获取原文
获取原文并翻译 | 示例

摘要

To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful.;Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries.;To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit exceptional electrochemical performance owing to the high conductivity of carbon and effective restriction of polysulfides and polyselenides in carbon matrix, which avoids shuttle reaction.
机译:为了解决由化石燃料引起的能源危机和环境污染,迫切需要开发可持续的,可再生的,环境友好的,低成本和高容量的储能设备,以为电动汽车提供动力并增强清洁能源方法,例如太阳能,风能和水能。但是,商用锂离子电池不能满足下一代可充电电池的关键要求。商业化的电极材料(石墨阳极和LiCoO 2阴极)是不可持续的,不可再生的且对环境有害的;源自生物质的有机材料因其可持续性,可再生性,环境友好性和低成本而成为下一代可充电电池阳极的有希望的候选者。在下一代电池有机材料潜力巨大的推动下,我启动了新的研究方向,以探索用于锂离子和钠离子电池阳极的先进有机化合物。在我的工作中,我使用了月桂酸二钠盐和2,5-二羟基-1,4-苯醌二钠盐作为模型,研究尺寸和碳涂层对锂离子和钠离子电池电化学性能的影响。结果表明,将有机粒径减小到纳米级并用氧化石墨烯包裹有机材料可以显着提高锂离子和钠离子电池中有机阳极的倍率能力和循环稳定性。还研究了高容量的硫和硒阴极。但是,硫和硒阴极的电导率低且发生穿梭反应,从而导致容量下降和寿命变短。为了避免硫和硒的缺点,采用碳基体(如中孔碳,碳化聚丙烯腈和碳化per-3、4、9、10-四羧酸二酐)封装硫,硒和硫化硒。由于碳的高电导率以及碳基质中多硫化物和聚硒化物的有效限制,因此所得复合材料显示出优异的电化学性能,从而避免了穿梭反应。

著录项

  • 作者

    Luo, Chao.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Chemical engineering.;Engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号