首页> 外文学位 >Electrocatalysis: Dioxygen reduction and carbon dioxide conversion.
【24h】

Electrocatalysis: Dioxygen reduction and carbon dioxide conversion.

机译:电催化:双氧还原和二氧化碳转化。

获取原文
获取原文并翻译 | 示例

摘要

Due to increasing greenhouse gas emissions and their link to global climate change, much attention has been given towards both reducing current, atmospheric greenhouse gas emissions and developing clean, renewable energy sources. The first section of this thesis focuses on reducing greenhouse gas emissions. Primarily focusing on CO2, routes towards reducing atmospheric levels include capture, sequestration, and conversion. For CO 2 conversion, Au electrocatalysts have demonstrated high CO2 reduction activity to CO which can then be further converted to various synfuels or commodity chemicals. In the first section of this thesis, Au electrocatalysts are further probed by utilizing a Ag-based model using N-containing additives, such as pyrazole and benzotriazole, and surface-enhanced Raman spectroscopy (SERS). SERS reveals that only in the presence of N-containing additives a stronger CO band is seen. These additives do not affect the CO2 reduction mechanism of Au, as found by Tafel and product distribution analyses. The enhancement of the CO2 reduction rate on Au is also demonstrated by utilizing a known CO2 scavenger, ethanolamine, adsorbed on the Au surface. This result suggests that improving CO2 reduction should focus on the reactant side of the Sabatier plot.;The next two sections of this thesis focus on the development of electrocatalysts for the oxygen reduction reaction (ORR), utilized in fuel cell applications. Due to the slow kinetics of the ORR, research has focused on studying how ORR catalysts reduce O2 and developing new cost-effective catalysts with improved activity. The second section of this thesis focuses on studying pyrolyzed Fe/N/C electrocatalysts, which have been shown to have high ORR activity similar to that of Pt, the benchmark catalyst. However, the active site of pyrolyzed Fe/N/C electrocatalysts for the ORR has been a source of debate since the initial discovery that these materials demonstrated activity towards the ORR. This has extremely limited systematic improvements to trial-and-error-based methods. In this section, a carbon-supported iron(II) phthalocyanine (FePc) that has been pyrolyzed at 800°C is utilized as a model catalyst. Studying the ORR on this material in the absence and presence of azide in acidic, neutral, and alkaline environments, the ORR activity and mechanism on pyrolyzed Fe/N/C materials can be further interrogated. The presence of azide served to enhance the ORR activity of this material in neutral electrolyte while having no effect in acidic or alkaline electrolytes. Tafel slope differences in addition to the azide enhancement suggest an Fe-centered active site for the ORR in pyrolyzed FePc and potentially other Fe/N/C electrocatalysts. This study provides both the first small molecule enhancement of the ORR with Fe/N/C catalysts and an additional route to further interrogate other electrocatalysts.;The last section of this thesis centers on the adsorption of O2 on dynamic electrode surfaces, most specifically Pd, Pt, and Pt-alloys, during the ORR in both acidic and alkaline electrolytes. Much work involving these catalysts involves relating electronic properties and adsorption energies to their ORR activities. However, most research focuses on the Pt-O or Pd-O bond, assuming a static Pt-Pt or Pd-Pd bond. It has previously been shown, utilizing in situ surface stress measurements and EXAFS, that the Pt-Pt bond is not static during the ORR in an acidic electrolyte, with changes in length from 5 to 10 mA due to O2 adsorption. By using in situ surface stress measurements, other electrode systems have been characterized and similar dynamics to what was demonstrated with Pt previously are seen and presented herein. In an alkaline electrolyte, the Pt surface expands less, potentially due to its initial expanded state caused by OH-. Pt alloy materials demonstrate an increased expansion over Pt when O2 adsorption occurs. Most interestingly, in an acidic electrolyte, Pd demonstrates a minimal change due to O2 adsorption while in an alkaline electrolyte, behaves similar to Pt. Understanding the surface dynamics of these systems will help to develop more effective ORR electrocatalysts by adding valuable insight into how O 2 adsorption alters the surface bonds.
机译:由于温室气体排放量的增加及其与全球气候变化的联系,人们在降低当前大气中的温室气体排放量和开发清洁的可再生能源方面都给予了很多关注。本文的第一部分着重于减少温室气体排放。主要关注二氧化碳,减少大气水平的途径包括捕集,封存和转化。对于CO 2转化,Au电催化剂已显示出将CO2还原为CO的高活性,然后可将其进一步转化为各种合成燃料或商品化学品。在本文的第一部分中,通过使用含吡咯烷和苯并三唑等含氮添加剂的Ag基模型和表面增强拉曼光谱(SERS),进一步研究了Au电催化剂。 SERS表明,只有在含氮添加剂的存在下,才能看到更强的CO带。 Tafel和产品分布分析发现,这些添加剂不会影响Au的CO2还原机理。通过利用吸附在Au表面上的已知的CO 2清除剂乙醇胺也证明了在Au上的CO 2还原速率的提高。该结果表明,改善CO2的还原应侧重于Sabatier图的反应物一侧。本论文的下两节重点在于开发用于燃料电池应用的氧还原反应(ORR)的电催化剂。由于ORR的动力学缓慢,因此研究重点是研究ORR催化剂如何还原O2并开发具有改进活性的新型经济高效催化剂。本文的第二部分着重于研究热解的Fe / N / C电催化剂,已证明它们具有与基准催化剂Pt相似的高ORR活性。然而,自从最初发现这些材料证明对ORR具有活性以来,用于ORR的热解Fe / N / C电催化剂的活性位点一直是争论的焦点。这对基于试错法的系统改进非常有限。在本部分中,将在800°C高温下热解的碳载铁酞菁铁(II)用作模型催化剂。在酸性,中性和碱性环境下,在不存在叠氮化物的情况下研究这种材料的ORR,可以进一步研究热解Fe / N / C材料的ORR活性和机理。叠氮化物的存在有助于增强该材料在中性电解质中的ORR活性,而对酸性或碱性电解质没有影响。除叠氮化物增强外,Tafel斜率差异表明,在热解后的FePc和潜在的其他Fe / N / C电催化剂中,ORR的Fe中心活性中心。这项研究既提供了用铁/氮/碳催化剂增强ORR的第一个小分子,又提供了进一步审讯其他电催化剂的另一条途径。本论文的最后一部分着眼于动态电极表面上O2的吸附,特别是Pd ,Pt和Pt合金,在酸性和碱性电解质中进行ORR时。涉及这些催化剂的许多工作涉及将电子性质和吸附能与其ORR活性相关联。但是,大多数研究都集中在Pt-O或Pd-O键上,假定存在静态Pt-Pt或Pd-Pd键。先前已经证明,利用原位表面应力测量和EXAFS,在酸性电解质的ORR过程中,Pt-Pt键不是静态的,由于O2吸附,其长度在5到10 mA之间变化。通过使用原位表面应力测量,已对其他电极系统进行了表征,并在本文中看到并展示了与以前用Pt演示的相似的动力学。在碱性电解质中,Pt表面的膨胀较小,这可能是由于OH-引起的初始膨胀状态。当发生O2吸附时,Pt合金材料的膨胀性会超过Pt。最有趣的是,在酸性电解质中,Pd由于氧气的吸附而显示出最小的变化,而在碱性电解质中,其表现与Pt相似。通过增加对O 2吸附如何改变表面键的有价值的见解,了解这些系统的表面动力学将有助于开发更有效的ORR电催化剂。

著录项

  • 作者

    Oberst, Justin Lloyd.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Materials science.;Analytical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号