首页> 外文学位 >Beta-1,3 glucan in Candida albicans biofilm infection: Drug resistance and diagnosis.
【24h】

Beta-1,3 glucan in Candida albicans biofilm infection: Drug resistance and diagnosis.

机译:Beta-1,3葡聚糖在白色念珠菌生物膜感染中的耐药性和诊断。

获取原文
获取原文并翻译 | 示例

摘要

Candida albicans, the most common human fungal pathogen, causes both superficial and deep fungal infections. A recently recognized virulence trait of C. albicans is the ability to grow as a biofilm composed of adherent cells encased in an extracellular matrix produced by the cells. Upon adapting to a biofilm lifestyle, Candida is capable of causing life-threatening infections by attaching to the surface of medical devices. Cells in this environment are phenotypically distinct, exhibiting up to 1000-fold increased drug resistance compared to non-biofilm cells. Because this extraordinary drug resistance is a major obstacle for treatment, Candida device-associated infections require prompt attention and device removal. However, there are no diagnostic tests for Candida biofilm infection.;We have developed and characterized an in vivo central venous catheter C. albicans biofilm model, as well as an in vitro biofilm model, which have been instrumental in our analysis of biofilm pathogenesis and drug resistance. Transcriptional analysis of venous catheter biofilm cells identified an abundance transcripts involved in carbohydrate metabolism. Therefore, we hypothesized that the extracellular matrix beta-1,3 glucan as a key component. Using a set of genetically modified strains, we linked expression of beta-1,3 glucan synthase gene FKS1 to the manufacture of extracellular glucan. This material is incorporated into an adhesive, carbohydrate-rich matrix critical for biofilm resistance to a variety of antifungal compounds, but is not needed for drug resistance during non-biofilm growth. The matrix glucan acts by sequestering drug, preventing it from reaching its intended target.;Furthermore, we investigated the utility of beta-1,3 glucan as a diagnostic marker for Candida biofilm infection. We found elevated serum glucan levels in animals with catheter biofilm infections compared to those with non-biofilm infections. These experiments identify a novel mechanism of resistance for Candida biofilms and a promising therapeutic and diagnostic target for these devastating infections.
机译:白色念珠菌是最常见的人类真菌病原体,可引起浅表真菌感染和深部真菌感染。最近发现的白色念珠菌的毒力特征是其能够生长成由粘附细胞包裹的生物膜的能力,该粘附细胞被包裹在由细胞产生的细胞外基质中。适应生物膜生活方式后,念珠菌能够附着在医疗器械表面,从而导致威胁生命的感染。在这种环境中的细胞在表型上是不同的,与非生物膜细胞相比,其耐药性提高了近1000倍。由于这种非凡的耐药性是治疗的主要障碍,因此念珠菌与器械相关的感染需要立即引起注意并拆除器械。但是,尚无针对念珠菌生物膜感染的诊断测试。我们已经开发并鉴定了体内中心静脉导管白色念珠菌生物膜模型以及体外生物膜模型,这在我们对生物膜发病机制和耐药性。静脉导管生物膜细胞的转录分析确定了参与碳水化合物代谢的大量转录物。因此,我们假设细胞外基质β-1,3葡聚糖为关键成分。使用一组基因修饰的菌株,我们将β-1,3葡聚糖合酶基因FKS1的表达与细胞外葡聚糖的制造联系起来。该材料被掺入到富含碳水化合物的粘性基质中,该基质对于生物膜对多种抗真菌化合物的抵抗力至关重要,但在非生物膜生长过程中的抗药性并不需要。基质葡聚糖通过隔离药物起作用,阻止其达到预定的目标。此外,我们研究了β-1,3葡聚糖作为念珠菌生物膜感染诊断标志物的用途。我们发现患有导管生物膜感染的动物的血清葡聚糖水平高于非生物膜感染的动物。这些实验确定了针对念珠菌生物膜的新型耐药机制,以及针对这些破坏性感染的有希望的治疗和诊断目标。

著录项

  • 作者

    Nett, Jeniel Emily.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Molecular.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 265 p.
  • 总页数 265
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号