首页> 外文学位 >Analysis and synthesis of effective human-robot interaction at varying levels in control hierarchy.
【24h】

Analysis and synthesis of effective human-robot interaction at varying levels in control hierarchy.

机译:分析和综合控制层次结构中不同级别的有效人机交互。

获取原文
获取原文并翻译 | 示例

摘要

Robot controller design is usually hierarchical with both high-level task and motion planning and low-level control law design. In the presented works, we investigate methods for low-level and high-level control designs to guarantee joint performance of human-robot interaction (HRI). In the first work, a low-level method using the switched linear quadratic regulator (SLQR), an optimal control policy based on a quadratic cost function, is used. By incorporating measures of robot performance and human workload, it can be determined when to utilize the human operator in a method that improves overall task performance while reducing operator workload. This method is demonstrated via simulation using the complex dynamics of an autonomous underwater vehicle (AUV), showing this method can successfully overcome such scenarios while maintaining reduced workload. An extension of this work to path planning is also presented for the purposes of obstacle avoidance with simulation showing human planning successfully guiding the AUV around obstacles to reach its goals. In the high-level approach, formal methods are applied to a scenario where an operator oversees a group of mobile robots as they navigate an unknown environment. Autonomy in this scenario uses specifications written in linear temporal logic (LTL) to conduct symbolic motion planning in a guaranteed safe, though very conservative, approach. A human operator, using gathered environmental data, is able to produce a more efficient path. To aid in task decomposition and real-time switching, a dynamic human trust model is used. Simulations are given showing the successful implementation of this method.
机译:机器人控制器设计通常是分层的,同时具有高级任务和运动计划以及低级控制律设计。在提出的作品中,我们研究了用于低水平和高水平控制设计的方法,以确保人机交互(HRI)的联合性能。在第一个工作中,使用了一种使用开关线性二次调节器(SLQR)的低级方法,该方法是基于二次成本函数的最优控制策略。通过合并机器人性能和人员工作量的度量,可以确定何时使用人员操作员,该方法可以提高总体任务性能,同时减少操作员工作量。通过使用自动水下航行器(AUV)的复杂动力学进行仿真演示了该方法,表明该方法可以成功克服此类情况,同时保持减少的工作量。为了避开障碍物,还介绍了这项工作的扩展,以进行避障,仿真显示了人类计划成功地指导了AUV绕过障碍物达到其目标。在高级方法中,正式方法适用于操作员在未知环境中导航时监视一组移动机器人的场景。在这种情况下,自主性使用以线性时态逻辑(LTL)编写的规范以一种保证安全(尽管非常保守)的方法来进行符号运动计划。人工操作人员使用收集到的环境数据可以产生更有效的路径。为了帮助任务分解和实时切换,使用了动态的人类信任模型。仿真显示了该方法的成功实施。

著录项

  • 作者

    Spencer, David A.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 68 p.
  • 总页数 68
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号