首页> 外文学位 >Oleophilic Bio Barriers (OBBs) for control of hydrocarbon sheens at groundwatersurface water interfaces.
【24h】

Oleophilic Bio Barriers (OBBs) for control of hydrocarbon sheens at groundwatersurface water interfaces.

机译:亲油性生物屏障(OBB),用于控制地下水表面水界面处的碳氢化合物光泽。

获取原文
获取原文并翻译 | 示例

摘要

Sheens are a common problem at petroleum facilities located adjacent to surface water bodies. Thin, iridescent films of Non-Aqueous Phase Liquid (NAPL) can form on surface water sporadically and unpredictably via three processes: seeps, ebullition, and/or shoreline erosion. Because the appearance of sheens can elicit a notice of violation of the Clean Water Act, a suite of remedies has been used to address them. Common remedies are often predicated on physical barriers and sorbent barriers, both of which can be expensive and/or prone to failure due to bypass and/or finite storage capacities.;Groundwater-Surface water Interfaces (GSIs) are active biological zones where NAPL fluxes are attenuated via aerobic biological degradation. Physical and sorptive barriers can inhibit aerobic degradation processes by causing NAPL to accumulate, preventing oxygen delivery or introducing organic matter that exerts an oxygen demand. Shortcomings of current sheen remedies motivate the research presented herein, exploring the concept of aerobic reactive barriers at GSIs. Specifically, the concept of an Oleophilic Bio Barrier (OBB) is advanced. An OBB prevents sheens due to seeps, ebullition, and erosion by employing 1) an oleophilic geocomposite to sorb NAPL, 2) aerobic degradation of NAPL via naturally occurring microbes, and 3) structural cover to mitigate erosion. A full US patent detailing these concepts was submitted to the US patent office in September 2014 (Zimbron et al., 2014).;The work presented herein includes laboratory studies, a preliminary field study, a full-scale field demonstration and a general estimate of construction costs. Results of the lab studies provided proof-of-concept that a geocomposite material in an OBB could prevent sheens. The geocomposite was shown to have a capacity of 3L of NAPL/m2. The geocomposite was also shown to reduce dissolved hydrocarbon concentrations by up to 77%. The preliminary field study showed that an OBB could be used to prevent sheens in a field setting. Four 1m x 1m OBBs were installed in March 2013 and monitored through August 2013. In August, NAPL saturations of up to 1.6 L/m2 were measured in the OBBs, demonstrating their ability to prevent sheens. The geocomposite maintained structural integrity, suggesting chemical compatibility with the NAPL. A low redox potential (62 mV) and the presence of dissolved iron (9.0 mg/L) at 90 cm depth showed that subsurface sediments were anaerobic. Redox potentials ranging from 302 to 423 mV were measured in the OBB water, demonstrating that aerobic degradation could occur and deplete NAPL on the OBBs. Results from the full-scale (36 ft x 18 ft) OBB module study demonstrated sheen prevention and microbial activity. Of 26 visual inspections for sheens, no sheens were observed sourcing from the OBB, while 3 inspections yielded sheen observations on adjacent shoreline. Seasonal changes in sorbed NAPL composition were consistent with patterns of microbial degradation and correlated to decreased redox potentials and warm temperatures. Microbial populations in the OBB were comparable to adjacent and underlying sediments but showed increased diversity of hydrocarbon-degrading microbes. In addition, structural cover was shown to mitigate erosion associated with ice-scour, while sustaining minimal damage and sedimentation. Costs for OBB construction were estimated to be on the order of ;Recommendations for future work include OBB design modifications for improved sediment control, greater compatibility with natural environments, and enhanced NAPL retention capacity. Simplified performance monitoring, research on governing processes, methods for characterizing sheen sources, and the development of a model to support OBB design optimization are also recommended. Ongoing consideration of expanding the full-scale OBB module and active consideration of OBB remedies at other sites provide promising opportunities for further development.
机译:在靠近地表水体的石油设施中,光泽是一个普遍的问题。非水相液体(NAPL)的虹彩呈虹彩状薄膜可能会通过以下三个过程零星地,不可预测地在地表水上形成:渗透,沸腾和/或海岸线侵蚀。由于光泽的出现会引起违反《清洁水法》的通知,因此已采用了一系列补救措施。常见的补救措施通常是针对物理屏障和吸附剂屏障,这两种屏障都很昂贵,并且/或者由于旁路和/或有限的存储能力而容易失效。地下水-地表水界面(GSI)是活性生物区域,NAPL通量在其中通过有氧生物降解而减弱。物理屏障和吸收屏障会导致NAPL积累,阻止氧气输送或引入产生氧气需求的有机物质,从而抑制需氧降解过程。当前光泽补救措施的不足激发了本文提出的研究,探索了GSI的好氧反应性障碍的概念。具体地,亲油生物屏障(OBB)的概念被提出。 OBB通过使用1)亲油性土工复合材料吸收NAPL,2)通过自然产生的微生物对NAPL进行好氧降解和3)减轻侵蚀的结构覆盖层来防止由于渗水,沸腾和侵蚀引起的光泽。详细介绍这些概念的完整美国专利已于2014年9月提交给美国专利局(Zimbron et al。,2014);;此处介绍的工作包括实验室研究,初步现场研究,全面现场演示和一般估算的建设成本。实验室研究的结果提供了概念证明,即OBB中的土工复合材料可以防止光泽。该土工复合材料的NAPL / m2容量为3L。还显示出该土工复合材料最多可减少77%的溶解烃浓度。初步的现场研究表明,OBB可用于防止现场环境中的光泽。 2013年3月安装了4个1m x 1m的OBB,并在2013年8月之前对其进行监视。8月,在OBB中测得的NAPL饱和度高达1.6 L / m2,这表明它们具有防止光泽的能力。土工复合材料保持结构完整性,表明与NAPL的化学相容性。低氧化还原电势(62 mV)和在90 cm深度存在溶解的铁(9.0 mg / L)表明,地下沉积物是厌氧的。在OBB水中测得的氧化还原电位范围为302至423 mV,这表明可能发生有氧降解并消耗OBB上的NAPL。全面(36 ft x 18 ft)OBB模块研究的结果证明了光泽的预防和微生物活性。在26次对光泽的目视检查中,没有观察到OBB发出的光泽,而3次检查在相邻海岸线上产生了光泽。吸附的NAPL成分的季节性变化与微生物降解的模式一致,并且与氧化还原电势的降低和温暖的温度有关。 OBB中的微生物种群与邻近和下面的沉积物相当,但显示出降解烃的微生物多样性增加。另外,显示出结构覆盖物减轻了与冰酷有关的侵蚀,同时保持了最小的破坏和沉积。 OBB的建设成本估计约为;未来工作的建议包括OBB的设计修改,以改善泥沙控制,与自然环境的兼容性以及NAPL保留能力。还建议简化性能监控,研究治理流程,表征光泽源的方法以及开发支持OBB设计优化的模型。不断考虑扩大完整的OBB模块,并在其他站点积极考虑OBB补救措施,为进一步发展提供了广阔的机遇。

著录项

  • 作者

    Chalfant, Marc William.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Environmental engineering.;Civil engineering.;Environmental science.
  • 学位 M.S.
  • 年度 2015
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号