首页> 外文学位 >Physical Properties of NiFeCrCo-based High-Entropy Alloys.
【24h】

Physical Properties of NiFeCrCo-based High-Entropy Alloys.

机译:NiFeCrCo基高熵合金的物理性能。

获取原文
获取原文并翻译 | 示例

摘要

Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown.;The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties.;Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties.;The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.
机译:常规的合金设计基于通过相对少量添加其他元素来改善单一碱或溶剂元素的性能。最近,已经对包含多种主要元素的合金,特别是多组分等原子合金进行了研究。当此类合金形成固溶相时,由于它们的高构型熵,它们被称为“高熵合金”(HEA)。与常规的稀溶液合金相比,这些合金通常具有有利的性能,但是它们的组成复杂性和相对新颖性意味着它们仍然难以设计,并且其基本性能通常是未知的。这项工作的动机是对某些合金的详细实验探索。 NiFeCrCo基合金的基本物理性能。 NiFeCrCoMn是最早开发的等原子HEA之一。由于该单一系统内的组成空间非常大,因此这项工作主要集中于等原子合金和因其特定性能而选择的非子原子合金的有限子集。;使用常规方法(电弧熔化)和非平衡方法制备了几种合金(机械合金化)。研究的性质包括堆垛层错能,整体力学性能,单晶弹性常数和磁性能。;发现等原子NiFeCrCo和NiFeCrCoMn合金具有中等至低的堆垛层错能,为18-30 mJ m-2。由于它们是单相fcc合金,因此具有很高的拉伸延展性。此外,它们还具有较高的加工硬化率,从而具有较高的韧性。 NiFeCrCo在延展性和韧性方面优于五组分等原子合金。具有较高Co含量以减少堆垛层错能量的5组分合金也表现良好。使用已知取向的晶粒的纳米压痕模量测量来测量单晶弹性常数。测得的弹性常数与使用第一原理建模计算的弹性常数一致。除了Mn之外,还添加Zn导致优选形成多相的合金。经过最佳热处理后,它会形成纳米级的FeCo晶粒,从而在室温下产生永久磁行为。

著录项

  • 作者

    Zaddach, Alexander Joseph.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号