首页> 外文学位 >Carbon Nanofiber Based Electrodes for Li-Air Batteries.
【24h】

Carbon Nanofiber Based Electrodes for Li-Air Batteries.

机译:锂空气电池用碳纳米纤维基电极。

获取原文
获取原文并翻译 | 示例

摘要

Driven by the pressure of greenhouse gas emissions, same as the tremendous business prospects of portable electronic devices and electric vehicles, developing new materials for electricity storage systems have been experiencing the non-stop exponential growth1-3. Although having essential chemical challenges and obstacle, Li-air batteries, the so-called "breathing" battery, start to draw significant attention with the attractively-high capacity, which is 5-10 times greater than that of Li-ion batteries4. The essential chemical difficulty lies in the sluggish multi-electron-transfer oxygen reduction and evolution reactions, coupling with complexity of multi-phase systems and inert chemical nature of the reaction products. Consequently, severe polarization, poor reversibility, and low cycling stability become the performance-limiting problems that must be addressed before Li-air batteries succeeding Li-ion batteries. High-surface-area and highly-conductive carbons become the desired material choice for electrodes used in Li-air batteries. Among various carbon materials, carbon nanofiber (CNF) electrodes are particularly promising for use in Li-air cathodes considering their characteristics such as low cost, high surface area, and high conductivity. Thus, this research focused on CNF-based electrodes for Li-air batteries.;In Chapter 3, non-woven porous carbon nanofiber (PCNF) electrodes were fabricated through electrospinning and carbonization of ZnCl2/polyacrylonitrile (PAN) precursors to evaluate the paradox effect of broadening surface area on improving cell reversibility and decreasing electrode conductivity for Li-air batteries. SEM, EDS, and nitrogen adsorption-desorption were used to evaluate the morphology and porosity of the obtained macro/micro-porous structure. The specific surface area of the PCNF electrode made from 30% ZnCl2/PAN precursor was found to be 20 times greater than that of carbon nanofibers (CNFs) made directly from the PAN precursor. Electrochemical performance tests showed the PCNF electrodes had lower capacity but better reversibility compared with CNF electrodes. In pursuing better electrode structure and higher performance of Li-air batteries, it is not always the larger surface area the better. Adjusting the balance between conductivity and surface area to the specific applications is of significant importance to increase the battery performance efficiently.;In Chapter 4, MnOx/CNF composite electrodes were prepared through electrospinning and heat treatment. SEM and STEM coupled with EDS revealed the morphology and chemical structure of the composite electrodes. An X-ray photoelctron spectroscope was deployed to analyze the oxidation state of Mn in MnOx/CNF composites. Compared with CNF electrode, the synthesized MnOx-CNF electrodes showed larger charge capacity and higher columbic efficiency in eight cycles, indicates the catalytic role of MnOx in oxygen evolution reactions. It was hence demonstrated that as a binder-free and free-standing catalyst/supporting carbon mat electrode, the MnOx -CNF nanocomposites offered a promising material electrode candidate for Li-air cathodes.;In Chapter 5, different MnO2/CNF electrodes with MnO 2 nanofibers anchored on the CNF surface or MnO2 nanoparticles loaded on the CNF surface were obtained through low-current and high-current electrodeposition (LCD and HCD), respectively. The morphology of CNF and deposited MnO 2/CNF was evaluated by SEM. Chemical composition and oxidation state of Mn in MnO2/CNF was analyzed by STEM/EDS and XPS. Through electrochemical analysis, both MnO2/CNF electrodes possessed much higher discharge capacity, better reversibility, and more cycling stability than regular CNF electrode. Compared with the nanoparticle/nanofiber structured HCD-MnO 2/CNF composite, the fiber-anchored-on-fiber structured LCD-MnO 2/CNF composite showed even better electrochemical performance. This illustrated the importance of catalyst morphology for Li-air batteries. This binder-free fiber-anchored-on-fiber structured MnO2/CNF electrode is a promising candidate for catalyst/carbon-matrix Li-air cathode.
机译:与便携式电子设备和电动汽车的巨大商业前景一样,在温室气体排放压力的驱使下,开发用于蓄电系统的新材料一直在经历不停的指数增长1-3。尽管具有重要的化学挑战和障碍,但锂空气电池(所谓的“呼吸”电池)以引人注目的高容量开始引起了广泛的关注,该容量是锂离子电池的5-10倍4。化学上的基本困难在于缓慢的多电子转移氧还原和放慢反应,以及多相系统的复杂性和反应产物的惰性化学性质。因此,严重的极化,差的可逆性和低的循环稳定性成为限制性能的问题,必须在锂空气电池接替锂离子电池之前解决。高表面积和高导电性碳成为锂空气电池中使用的电极的理想材料选择。在各种碳材料中,考虑到碳纳米纤维(CNF)电极的特性(例如低成本,高表面积和高电导率),它们特别有望用于锂空气阴极。因此,本研究的重点是用于锂空气电池的CNF基电极。在第三章中,通过对ZnCl2 /聚丙烯腈(PAN)前体进行电纺和碳化来制造非织造多孔碳纳米纤维(PCNF)电极,以评估其悖论效应。表面积对改善锂空气电池的电池可逆性和降低电极电导率的影响。 SEM,EDS和氮吸附-解吸用于评估所获得的大孔/微孔结构的形态和孔隙率。发现由30%ZnCl2 / PAN前体制成的PCNF电极的比表面积比直接由PAN前体制成的碳纳米纤维(CNF)的比表面积大20倍。电化学性能测试表明,与CNF电极相比,PCNF电极的容量较低,但可逆性更好。在追求更好的电极结构和更高性能的锂空气电池中,并非总是表面积越大越好。调整电导率和表面积之间的平衡以适应特定应用对于有效提高电池性能具有重要意义。在第四章​​中,通过电纺丝和热处理制备了MnOx / CNF复合电极。 SEM和STEM结合EDS揭示了复合电极的形态和化学结构。用X射线光电子能谱仪分析了MnOx / CNF复合材料中Mn的氧化态。与CNF电极相比,合成的MnOx-CNF电极在八个循环中显示出更大的充电容量和更高的库伦效率,表明MnOx在氧释放反应中具有催化作用。因此,证明了作为无粘合剂和独立的催化剂/支撑碳垫电极,MnOx -CNF纳米复合材料为锂空气阴极提供了有希望的材料电极候选材料。在第5章中,不同的MnO2 / CNF电极与MnO通过低电流和高电流电沉积(LCD和HCD)分别获得2条锚定在CNF表面的纳米纤维或MnO2纳米颗粒负载在CNF表面。通过SEM评价CNF和沉积的MnO 2 / CNF的形态。通过STEM / EDS和XPS分析了MnO2 / CNF中Mn的化学组成和氧化态。通过电化学分析,两个MnO2 / CNF电极均比常规CNF电极具有更高的放电容量,更好的可逆性和更大的循环稳定性。与纳米颗粒/纳米纤维结构的HCD-MnO 2 / CNF复合材料相比,纤维锚固纤维结构的LCD-MnO 2 / CNF复合材料表现出更好的电化学性能。这说明了锂空气电池催化剂形态的重要性。这种无粘合剂的纤维锚固结构的MnO2 / CNF电极是催化剂/碳基锂空气阴极的有前途的候选材料。

著录项

  • 作者

    Xu, Guanjie.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Materials science.;Chemical engineering.;Polymer chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号