首页> 外文学位 >Signal analysis and radioholographic methods for airborne radio occultations.
【24h】

Signal analysis and radioholographic methods for airborne radio occultations.

机译:机载无线电掩星的信号分析和放射全息方法。

获取原文
获取原文并翻译 | 示例

摘要

Global Positioning System (GPS) radio occultation (RO) is an atmospheric sounding technique utilizing the change in propagation direction and delay of the GPS signal to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellite missions. Nevertheless, when observing localized transient events, such as tropical storms, current LEO satellite systems cannot provide sufficiently high temporal and spatial resolution soundings. An airborne RO (ARO) system has therefore been developed for localized GPS-RO campaigns. The open-loop (OL) tracking in post-processing is used to cross-correlates the received Global Navigation Satellite System (GNSS) signal with an internally generated local carrier signal predicted from a Doppler model and extract the atmospheric refractivity information. OL tracking also allows robust processing of rising GPS signals using backward tracking, which will double the observed occultation event numbers.;RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading, however. The negative bias caused by low signal-to-noise ratio (SNR) and multipath ray propagation limits the depth of tracking in the atmosphere. Therefore, we developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking, and its applicability to airborne data is demonstrated. We then apply this model to set a threshold on refractivity retrieval, based upon the cumulative unwrapping error bias, to determine the altitude limit for reliable signal tracking. To enhance the SNR and decrease the unwrapping error rate, the CIRA-Q climatological model and signal residual phase pre-filtering are utilized to process the ARO residual phase. This more accurately modeled phase and less noisy received signal are shown to greatly reduce the bias caused by unwrapping error at lower altitude.;On the other hand, to process the superimposed signal in the lower troposphere with its highly variable moisture distribution, Radio-Holographic (RH) methods such as Phase Matching (PM) have been adapted for ARO platforms to untangle the bending angle of each signal path. Under the assumption of spherically symmetric atmosphere, ARO PM can identify different subsignals using the Method of the Stationary Phase (MSP) and determine the arrival angle for each impact parameter. As a result, each subsignal can be distinguished and its corresponding bending angle can be retrieved without producing a negative bias. The refractivity retrieval results using ARO PM are compared to those using the traditional Geometrical Optics (GO) method. The improvements are shown and discussed in the dissertation.;We applied these new methods to the received ARO data collected by the GNSS instrument system for multistatic and occultation sensing (GISMOS) in the 2010 PREDepression Investigation of Cloud systems (PREDICT) campaign. A data set of 5 research flights with 57 occultation events during the formation stage of the Hurricane Karl are processed and analyzed. In this research, the refractivity fractional difference with ERA-I model can be maintained at an average 2% above a height of 2km with a climatological model and ARO PM. Compared to the traditional geometrical optics (GO) method without climatological method assistance, the new ARO processing can effectively decrease the refractivity negative bias and significantly improve the retrieval depth of ARO.
机译:全球定位系统(GPS)无线电掩星(RO)是一种大气探测技术,利用传播方向的变化和GPS信号的延迟来测量折射率,从而提供有关温度和湿度的信息。 GPS-RO技术现在可在多个近地轨道(LEO)卫星任务中使用。然而,当观察局部短暂事件,例如热带风暴时,当前的LEO卫星系统无法提供足够高的时空分辨率测深。因此,已经开发了一种机载反渗透(ARO)系统,用于局部GPS-RO运动。后处理中的开环(OL)跟踪用于将接收到的全球导航卫星系统(GNSS)信号与从多普勒模型预测的内部生成的本地载波信号进行互相关,并提取大气折射率信息。 OL跟踪还允许使用向后跟踪对上升的GPS信号进行稳健的处理,这将使观测到的掩星事件数增加一倍。;对流层下部的RO信号受到快速的相位加速度和严重的信号功率衰减的不利影响。低信噪比(SNR)和多径射线传播引起的负偏压限制了大气中跟踪的深度。因此,我们开发了一个将SNR与OL跟踪产生的观测信号的残余相位方差相关的模型,并证明了其对机载数据的适用性。然后,我们基于累积的展开误差误差,应用此模型为折射率检索设置阈值,以确定用于可靠信号跟踪的高度限制。为了提高SNR并降低解包错误率,使用CIRA-Q气候模型和信号残留相位预滤波来处理ARO残留相位。这种更精确建模的相位和较少的噪声接收信号显示出可以大大降低较低高度下的解包误差所引起的偏差;另一方面,在湿度较低的对流层中处理叠加信号,其湿度分布高度可变,相位匹配(PM)等(RH)方法已针对ARO平台进行了调整,以解开每个信号路径的弯曲角度。在球形对称大气的假设下,ARO PM可以使用固定相位方法(MSP)识别不同的子信号,并确定每个撞击参数的到达角度。结果,可以区分每个子信号并且可以检索其相应的弯曲角度而不会产生负偏压。将使用ARO PM的折射率检索结果与使用传统几何光学(GO)方法的结果进行比较。本文对改进进行了展示和讨论。我们将这些新方法应用于由GNSS仪器系统收集的ARO数据,该数据用于GNSS仪器系统在2010年预压云调查(PREDICT)活动中的多静态和掩星感测(GISMOS)。处理并分析了飓风卡尔形成阶段的5次研究飞行和57次掩星事件的数据集。在这项研究中,使用气候模型和ARO PM,可以将ERA-I模型的折射率分数差异平均保持在2 km的高度之上平均2%。与没有气候方法帮助的传统几何光学方法相比,新的ARO处理可以有效地降低折射率负偏,并显着提高ARO的检索深度。

著录项

  • 作者

    Wang, Kuo-Nung.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Remote sensing.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号