首页> 外文学位 >The Neoproterozoic and Early Paleozoic Tectonic and Environmental Evolution of Alaska and Northwest Canada.
【24h】

The Neoproterozoic and Early Paleozoic Tectonic and Environmental Evolution of Alaska and Northwest Canada.

机译:阿拉斯加和加拿大西北部的新元古代和早古生代构造与环境演化。

获取原文
获取原文并翻译 | 示例

摘要

Neoproterozoic and early Paleozoic sedimentary deposits of the North American Cordillera record large fluctuations in global biogeochemical cycles, the establishment and diversification of multiple eukaryotic clades, the fragmentation of the supercontinent Rodinia, and the protracted development and subsequent demise of the western and northern Laurentian passive margins. Here, I put forth new tectono--, bio--, and chemo-stratigraphic models for the ∼780-540 Ma Windermere Supergroup of western North America and "pre-Mississippian" stratigraphy of northern Alaska that refine previous models for the Neoproterozoic and early Paleozoic tectonic and environmental evolution of Alaska and northwest Canada.;First, I present an updated model for early Windermere (780-720 Ma) sedimentation in NW Canada through a detailed study of the Callison Lake Formation of the Mount Harper Group, spectacularly exposed in the Coal Creek and Hart River inliers of the Ogilvie Mountains of Yukon, Canada. Twenty-one detailed measured stratigraphic sections are integrated with geological mapping, facies analysis, and new Rhenium-Osmium (Re-Os) geochronology to provide a depositional model for the Callison Lake Formation. Mixed siliciclastic, carbonate, and evaporite sediments record a complex subsidence history in which episodic basinal restriction and abrupt facies change can be tied accumulation in marginal marine embayments formed in discrete hangingwall depocenters of a major Windermere extensional fault zone. New organic-rich rock Re-Os ages of 752.7 +/- 5.5 and 739.9 +/- 6.1 Ma bracket Callison Lake sedimentation and constrain early Windermere sedimentation in NW Canada to post-date the eruption of the Gunbarrel Large Igneous Province by ∼30 million years and predate the successful rift-drift transition by ∼200 million years. In order to accommodate coeval extensional and compressional tectonism, abrupt facies change, and Neoproterozoic fault geometries, I propose that NW Canada experienced strike-slip deformation during the ∼740-660 Ma early fragmentation of Rodinia.;Second, I integrate carbon and oxygen isotope chemostratigraphy, sequence stratigraphy, geochronological data, and microfossil biostratigraphy from the Callison Lake Formation to highlight the potential for margin-wide correlation of Neoproterozoic successions in North America. Here, I also report the discovery of abundant and well-preserved vase-shaped microfossils in the Callison Lake Formation, dated with Re-Os geochronology at 739.9 +/- 6.1 Ma, that share multiple species-level taxa with a well-characterized and coeval assemblage from the Chuar Group, Grand Canyon, Arizona dated with U-Pb on zircon from an interbedded tuff at 742 +/- 6 Ma. The overlapping age and species assemblages from these two deposits suggests biostratigraphic utility, at least within Neoproterozoic basins of Laurentia, and perhaps globally. Sequence stratigraphic data from the Callison Lake Formation and other basal Windermere successions in northwest Canada delineate four major depositional sequences that are broadly coeval with similar stratigraphic packages in the ∼780--720 Ma Chuar-Uinta Mountain-Pahrump basins of the western United States. The new Re-Os age also confirms the timing of the Islay carbon isotope excursion (ICIE) in northwest Canada, which predates the onset of the Sturtian glaciation by >15 million years. Here, I hypothesize that this carbon isotope excursion represents a primary perturbation to the global carbon cycle and explore a number of models for its origin related to the duration of the excursion. Together, these data provide global calibration of sedimentary, paleontological, and geochemical records on the eve of profound environmental and evolutionary change.;Finally, I present an updated model for the origin of the Arctic Alaska--Chukotka microplate, a composite Cordilleran "suspect" terrane that comprises the greater portion of the modern continental margin of the Amerasian Basin of the Arctic Ocean, through a detailed study of pre-Mississippian stratigraphy in the Shublik, Sadlerochit, and British Mountains of the northeastern Brooks Range, Alaska. An exotic, non-Laurentian origin of Arctic Alaska--Chukotka has been proposed based on paleobiogeographic faunal affinities and various geochronological constraints from the southwestern portions of the microplate. Here, I report new early Paleozoic trilobite and conodont taxa that support a Laurentian origin for the North Slope of Arctic Alaska, as well as new Neoproterozoic--Cambrian stratigraphic correlations and igneous and detrital zircon geochronological data, that are both consistent with a Laurentian origin and profoundly different from those derived from similar-aged strata in the southwestern portions of Arctic Alaska--Chukotka. The North Slope terrane is accordingly interpreted as allochthonous with respect to its current position in northwestern Laurentia, but most likely originated further east along the Canadian Arctic or North Atlantic margins. These data demonstrate that Paleozoic construction of the composite Arctic Alaska--Chukotka microplate resulted from juxtaposition of the exotic southwestern parts of the microplate against the northern margin of Laurentia during protracted Ordovician(?)--Carboniferous Caledonian and Ellesmerian tectonism.
机译:北美科尔迪勒拉的新元古代和早古生代沉积沉积物记录了全球生物地球化学循环的大幅波动,多个真核进化枝的建立和多样化,超大陆罗丹尼亚的分裂以及劳伦斯山脉西北部和北缘的长期发展和随后的消亡。在这里,我提出了北美西部〜780-540 Ma温德米尔超级群的新构造,生物和化学地层学模型,以及阿拉斯加北部的“密西西比前”地层,完善了新元古代和早古生代的模型。阿拉斯加和加拿大西北部的古生代早期构造和环境演化。首先,我通过对哈珀山群的卡里森湖组的详细研究,提出了加拿大西北部温德米尔(780-720 Ma)早期沉积的更新模型。在加拿大育空地区奥格维山脉的煤溪和哈特河外围地区。 21个详细的测量地层剖面与地质制图,相分析和新的R- geo(Re-Os)地质年代学相结合,为卡里森湖组提供了沉积模型。混合的硅质碎屑岩,碳酸盐岩和蒸发岩沉积物记录了复杂的沉降历史,在该历史中,在温德米尔伸展断层带的离散上扬式沉积中心形成的边缘海相沉积中,发生了盆地的局限性和突变相的堆积。加拿大西北部新的富含有机物的岩石Re-Os年龄分别为752.7 +/- 5.5和739.9 +/- 6.1 Ma支架卡里森湖沉积并限制了温德米尔的早期沉积,以使冈巴雷尔大火成岩省的喷发晚了大约3000万年,并在成功的裂谷漂流过渡之前约2亿年。为了适应同时期的伸展和压缩构造,突然的相变和新元古代断层的几何形状,我建议加拿大西北部在罗迪尼亚的约740-660 Ma早期断裂过程中经历了走滑变形。第二,整合了碳和氧同位素来自卡里森湖组的化学地层学,层序地层学,地质年代学数据和微化石生物地层学,突显了北美新元古代演替的余量范围相关性的潜力。在这里,我还报告了在卡里森湖组中发现的,保存完好的花瓶状微化石的发现,其年代为Re9.9年代为739.9 +/- 6.1 Ma的Re-Os,与多个具有特征性的物种级生物群共享来自亚利桑那州大峡谷的Chuar集团的一次中世纪组合,其上以+/- +/- 6 Ma的夹层凝灰岩中的锆石中的U-Pb年代。这两个矿床重叠的年龄和物种组合表明,至少在Laurentia的新元古代盆地内,也许在全球范围内,生物地层学用途广泛。来自加拿大西北部卡里森湖组和其他基础温德米尔演替的层序地层资料描绘了美国西部约780--720 Ma Chuar-Uinta Mountain-Pahrump盆地中的四个主要沉积层序,大致与相似的地层相适应。新的Re-Os年龄也证实了加拿大西北部艾莱岛碳同位素偏移(ICIE)的时间,该时间比斯图尔特冰期开始早了1500万年。在这里,我假设这种碳同位素偏移代表了对全球碳循环的主要扰动,并探索了与偏移持续时间相关的许多模型。这些数据共同提供了在深刻的环境和进化变化前夕对沉积,古生物学和地球化学记录的全球校准。最后,我提出了北极阿拉斯加-楚科奇微孔板的起源的更新模型,这是一种复合的堇青菜“可疑”通过详细研究阿拉斯加布鲁克斯山脉东北部的Shublik,Sadlerochit和不列颠山脉的密西西比前地层,构成了北冰洋Amerasian盆地现代大陆边缘大部分的地貌。基于古生物地理动物区系亲和力和微板西南部分的各种地质​​年代学限制,提出了北极阿拉斯加-楚科奇的异域非劳伦起源。在这里,我报告了支持北极阿拉斯加北坡的劳伦斯起源的新的古生代三叶虫和牙形生物类群,以及新元古代-寒武纪地层的相关性以及火成岩和碎屑锆石的地质年代学数据,两者均与劳伦斯起源一致与那些来自北极阿拉斯加-楚科奇州西南地区类似年龄地层的钻探方法有很大的不同。因此,相对于其在西北劳伦西亚(Laurentia)的当前位置,北坡地层被解释为是异源的,但最有可能起源于加拿大北极或北大西洋边缘的更东部。这些数据表明,在长期奥陶纪(?)-石炭纪古苏格兰和Ellesmerian构造运动期间,北极阿拉斯加-楚科奇复合微板的古生代构造是由于微板西南异域与Laurentia的北边缘并置而引起的。

著录项

  • 作者

    Strauss, Justin Vincent.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Geology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 348 p.
  • 总页数 348
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号