首页> 外文学位 >Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors.
【24h】

Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors.

机译:用于电化学电容器的高级质子传导聚合物电解质。

获取原文
获取原文并翻译 | 示例

摘要

Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms. The optimized polymer electrolyte demonstrated even higher proton conductivity than pure HPAs and the enabled electrochemical capacitors have demonstrated an exceptionally high rate capability of 50 Vs-1 in cyclic voltammograms and a 10 ms time constant in impedance analyses.
机译:固体电化学储能装置的研究旨在为从柔性消费电子到微电子的新兴应用提供高性能,低成本和安全的运行解决方案。聚合物电解质,最小化设备密封和液体电解质泄漏是这些下一代技术的关键推动力。本文以杂多酸(HPA)和聚乙烯醇为电化学电容器,开发了一种新型的质子传导聚合物电解质体系。对HPA的质子传导机理以及HPA,添加剂和聚合物骨架之间的相互作用有了透彻的了解。已经对电解质的结构和化学键进行了广泛的研究,以识别和阐明影响电解质性能的关键属性。描述质子传导机制的数值模型已被用于区分这些属性。通过添加剂,聚合物结构改性和替代HPA的合成来优化聚合物电解质的性能已经实现了几个重要的里程碑,包括:(a)高质子迁移率和质子密度; (b)电极/电解质界面的离子可及性良好; (c)宽的电化学稳定性窗口; (d)良好的环境稳定性。具体而言,高质子迁移率已通过交联聚合物骨架以改善在常温至高湿度条件下(例如50-80%RH)的储水能力以及通过掺入纳米填料以增强保水性来解决在正常湿度水平下(例如30-60%RH)。通过利用额外的质子供体(即酸性增塑剂)并开发出不同的HPA,可以达到高质子密度。通过添加增塑剂,实现了良好的离子可及性。还已经通过利用具有不同杂原子的HPA对电解质系统的电化学稳定性窗口进行了研究和扩展。经过优化的聚合物电解质表现出比纯HPA更高的质子传导性,并且启用的电化学电容器在循环伏安图中显示出50 Vs-1的超高倍率能力,在阻抗分析中具有10 ms的时间常数。

著录项

  • 作者

    Gao, Han.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号