首页> 外文学位 >Additive manufacturing of Inconel 718 using electron beam melting: Processing, post-processing, & mechanical properties.
【24h】

Additive manufacturing of Inconel 718 using electron beam melting: Processing, post-processing, & mechanical properties.

机译:使用电子束熔化的Inconel 718增材制造:加工,后加工和机械性能。

获取原文
获取原文并翻译 | 示例

摘要

Additive Manufacturing (AM) process parameters were studied for production of the high temperature alloy Inconel 718 using Electron Beam Melting (EBM) to better understand the relationship between processing, microstructure, and mechanical properties. Processing parameters were analyzed for impact on process time, process temperature, and the amount of applied energy. The applied electron beam energy was shown to be integral to the formation of swelling defects. Standard features in the microstructure were identified, including previously unidentified solidification features such as shrinkage porosity and non-equilibrium phases. The as-solidified structure does not persist in the bulk of EBM parts due to a high process hold temperature (∼1000°C), which causes in situ homogenization. The most significant variability in as-fabricated microstructure is the formation of intragranular delta-phase needles, which can form in samples produced with lower process temperatures (< 960°C). A novel approach was developed and demonstrated for controlling the temperature of cool down, thus providing a technique for in situ heat treatment of material. This technique was used to produce material with hardness of 478+/-7 HV with no post-processing, which exceeds the hardness of peak-aged Inconel 718. Traditional post-processing methods of hot isostatic pressing (HIP) and solution treatment and aging (STA) were found to result in variability in grain growth and phase solution. Recrystallization and grain structure are identified as possible mechanisms to promote grain growth. These results led to the conclusion that the first step in thermal post-processing of EBM Inconel 718 should be an optimized solution treatment to reset phase variation in the as-fabricated microstructure without incurring significant grain growth. Such an optimized solution treatment was developed (1120°C, 2hr) for application prior to aging or HIP. The majority of as-fabricated tensile properties met ASTM AM Inconel 718 standards for yield stress and ultimate tensile strength, and STA yield stress, ultimate tensile strength, and elongation exceeded the ASTM standards for AM Inconel 718.
机译:研究了使用电子束熔化(EBM)来生产高温合金Inconel 718的增材制造(AM)工艺参数,以更好地理解加工,微观结构和机械性能之间的关系。分析工艺参数对工艺时间,工艺温度和施加的能量的影响。显示出所施加的电子束能量对于溶胀缺陷的形成是必不可少的。确定了微观结构中的标准特征,包括以前未确定的凝固特征,例如收缩孔隙率和不平衡相。由于较高的过程保持温度(〜1000°C),凝固后的结构不会保留在大部分EBM零件中,这会导致原位均质化。加工后的微观结构中最显着的变化是颗粒内三角相针的形成,这种针可形成于以较低工艺温度(<960°C)生产的样品中。开发并证明了一种用于控制冷却温度的新颖方法,从而提供了一种对材料进行原位热处理的技术。该技术用于生产没有后处理的硬度为478 +/- 7 HV的材料,该材料超过了峰值时效的Inconel 718的硬度。传统的后处理方法是热等静压(HIP)以及固溶处理和时效处理(STA)被发现导致晶粒生长和相溶液的变化。再结晶和晶粒结构被认为是促进晶粒生长的可能机制。这些结果得出的结论是,EBM Inconel 718的热后处理的第一步应该是一种优化的固溶处理,以重置加工后的微观结构中的相变,而不会引起明显的晶粒长大。开发了这种优化的固溶处理(1120°C,2小时),以在老化或HIP之前应用。大部分预制的拉伸性能都达到了ASTM AM Inconel 718的屈服应力和极限拉伸强度标准,而STA屈服应力,极限拉伸强度和伸长率都超过了ASTM Inconel 718的ASTM标准。

著录项

  • 作者

    Sames, William James, V.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Materials science.;Mechanical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 340 p.
  • 总页数 340
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号