首页> 外文学位 >Practical application of topology optimization to the design of large wind turbine towers.
【24h】

Practical application of topology optimization to the design of large wind turbine towers.

机译:拓扑优化在大型风力发电机塔架设计中的实际应用。

获取原文
获取原文并翻译 | 示例

摘要

Structural topology optimization is a mathematical approach developed to perform design optimization with the purpose of reducing the material usage, while maximizing structural performance, in accordance to specific design constraints. The principles behind this technique have been around for many decades, but recent advancements in the processing power of computers have allowed for the solving of complex problems, such as the optimization of tall wind turbine towers, bridges, and the bracing systems in skyscrapers.;There are two approaches commonly used in structural topology optimization: discrete and continuum. This thesis uses continuum topology optimization, which involves adjusting the distribution of a porous elastic solid material to extremize the design objective(s) and to satisfy constraints. The material porosity is the design variable that is adjusted during the optimization process. The design domain is broken down into a system of continuum degenerated finite elements, which are used for both structural analysis and to create a mesh representation of the structural system, just as pixels make up a picture. Solid elements are modeled as having no porosity, while void spaces have total porosity. As the optimization process occurs, the shape of the boundaries, and the number and size of internal holes are altered in order to best meet the design objective(s) and constraint(s). The purpose of performing continuum structural topology optimization of structural elements is to obtain promising concepts which provide a basis upon which to begin the design process.;The steps taken in this thesis to optimize the wind turbine tower are: 1. Create a solid model of the tower domain 2. Define the material properties 3. Determine the equivalent static design wind forces using the extreme loading conditions outlined in IEC 61400 4. Formulate the optimization problem by specifying the objective and constraint functions. 5. Solve the optimization problem and interpret the results.;This study on continuum topology optimization on the tower shell, indicates even with a significant reduction in material from the original design space, the structure is capable of meeting the design criteria. The results indicate that opening void spaces in the shell of the tower and creating an open lattice shape may be an effective method to reduce the volume of wind turbine towers, as it has in other applications. This concurs with the stated goal of my research, which is to show that topology optimization has the potential to be used in a multitude of practical applications in order to increase efficiency, and reduce cost of the production of wind power.
机译:结构拓扑优化是一种数学方法,旨在根据特定的设计约束条件进行设计优化,以减少材料使用量,同时最大化结构性能。这项技术的原理已经存在了数十年,但是计算机处理能力的最新进步已经解决了复杂的问题,例如优化了高耸的风力涡轮机塔架,桥梁以及摩天大楼中的支撑系统。在结构拓扑优化中通常使用两种方法:离散和连续。本文采用连续体拓扑优化方法,该方法涉及调整多孔弹性固体材料的分布,以最大化设计目标并满足约束条件。材料孔隙率是在优化过程中调整的设计变量。设计域被分解为连续退化的有限元系统,该系统既用于结构分析又用于创建结构系统的网格表示,就像像素构成图片一样。实体元素被建模为无孔隙,而空隙空间具有总孔隙。随着优化过程的进行,边界的形状以及内部孔的数量和大小都会发生变化,以最好地满足设计目标和约束条件。进行结构单元的连续结构拓扑优化的目的是获得有前途的概念,这些概念为开始设计过程提供基础。;本论文中用于优化风力涡轮机塔架的步骤包括:1.创建一个可靠的模型。塔域2.定义材料属性3.使用IEC 61400中概述的极限载荷条件确定等效的静态设计风力。4.通过指定目标函数和约束函数来表达优化问题。 5.解决优化问题并解释结果。;对塔架壳体进行连续体拓扑优化的研究表明,即使与原始设计空间相比材料的显着减少,该结构也能够满足设计标准。结果表明,像在其他应用中一样,在塔架的外壳中打开空隙空间并创建开放的格子形状可能是减少风力涡轮机塔架体积的有效方法。这与我的研究既定目标相吻合,即表明拓扑优化有潜力在众多实际应用中使用,以提高效率并降低风电生产成本。

著录项

  • 作者

    Warshawsky, Brandon Lee.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Civil engineering.
  • 学位 M.S.
  • 年度 2015
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号