首页> 外文学位 >Spectral Deferred Corrections for Parabolic Partial Differential Equations.
【24h】

Spectral Deferred Corrections for Parabolic Partial Differential Equations.

机译:抛物型偏微分方程的谱递延校正。

获取原文
获取原文并翻译 | 示例

摘要

We describe a new class of algorithms for the solution of parabolic partial differential equations (PDEs). This class of schemes is based on three principal observations. First, the spatial discretization of parabolic PDEs results in a stiff system of ordinary differential equations (ODEs) in time, and therefore, requires an implicit method for its solution. Spectral Deferred Correction (SDC) methods use repeated iterations of a low-order method (e.g. implicit Euler method) to generate a high-order scheme. As a result, SDC methods of arbitrary order can be constructed with the desired stability properties necessary for the solution of stiff differential equations. Furthermore, for large systems, SDC methods are more computationally efficient than implicit RungeKutta schemes. Second, implicit methods for the solution of a system of linear ODEs yield a linear system that must be solved on each iteration. It is well known that the linear system constructed from the spatial discretization of parabolic PDEs is sparse. In R 1, this linear system can be solved in O( n) where n is the number of spatial discretization nodes. However, in R 2, the straightforward spatial discretization leads to matrices with dimensionality n2 x n2 and bandwidth n. While fast inversions schemes of O(n3) exists, we use alternating direction implicit (ADI) methods to replace the single two-dimensional implicit step with two sub-steps where only one direction is treated implicitly. This approach results in schemes with computational cost O(n2). Likewise, ADI methods in R 3 have computational cost O( n3). While popular ADI methods are low-order, we combine the SDC methods with an ADI method to generate computationally efficient, high-order schemes for the solution of parabolic PDEs in R 2 and R 3. Third, traditional pseudospectral schemes for the representation of the spatial operator in parabolic PDEs yield differentiation operators with eigenvalues that can be excessively large. We improve on the traditional approach by subdividing the entire spatial domain, constructing bases on each subdomain, and combining the obtained discretization with the implicit SDC schemes. The resulting class of schemes are high-order in both time and space and have computational cost O(N · M) where N is the number of spatial discretization nodes and M is the number of temporal nodes. We illustrate the behavior of these schemes with several numerical examples.
机译:我们描述了一类新的算法来求解抛物型偏微分方程(PDE)。此类方案基于三个主要观察结果。首先,抛物线型PDE的空间离散会导致时间上僵化的常微分方程(ODE)系统,因此需要一种隐式方法求解。频谱延迟校正(SDC)方法使用低阶方法(例如隐式Euler方法)的重复迭代来生成高阶方案。结果,可以构造任意阶数的SDC方法,并具有求解刚性微分方程所需的所需稳定性。此外,对于大型系统,SDC方法比隐式RungeKutta方案具有更高的计算效率。其次,用于求解线性ODE系统的隐式方法会产生一个必须在每次迭代中求解的线性系统。众所周知,由抛物线形偏微分方程的空间离散构造的线性系统是稀疏的。在R 1中,可以在O(n)中求解此线性系统,其中n是空间离散化节点的数量。但是,在R 2中,直接的空间离散化导致维数为n2 x n2和带宽为n的矩阵。尽管存在O(n3)的快速反演方案,但我们使用交替方向隐式(ADI)方法将两个二维隐式步骤替换为两个子步骤,其中仅隐式处理一个方向。这种方法导致方案的计算成本为O(n2)。同样,R 3中的ADI方法具有计算成本O(n3)。尽管流行的ADI方法是低阶的,但我们将SDC方法与ADI方法结合起来以生成计算有效的高阶方案,用于求解R 2和R 3中的抛物线形PDE。第三,传统的伪谱方案用于表示抛物线型PDE中的空间算子产生的微分算子的特征值可能过大。通过对整个空间域进行细分,在每个子域上构建基础,并将获得的离散化与隐式SDC方案相结合,我们对传统方法进行了改进。所得的方案类别在时间和空间上都是高阶的,并且具有计算成本O(N·M),其中N是空间离散化节点的数量,M是时间节点的数量。我们通过几个数值示例来说明这些方案的行为。

著录项

  • 作者

    Beylkin, Daniel Joshua.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Applied mathematics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号