首页> 外文学位 >Kernel methods for biosensing applications
【24h】

Kernel methods for biosensing applications

机译:用于生物传感应用的内核方法

获取原文
获取原文并翻译 | 示例

摘要

This thesis examines the design noise robust information retrieval techniques based on kernel methods. Algorithms are presented for two biosensing applications: (1) High throughput protein arrays and (2) Non-invasive respiratory signal estimation. Our primary objective in protein array design is to maximize the throughput by enabling detection of an extremely large number of protein targets while using a minimal number of receptor spots. This is accomplished by viewing the protein array as a communication channel and evaluating its information transmission capacity as a function of its receptor probes. In this framework, the channel capacity can be used as a tool to optimize probe design; the optimal probes being the ones that maximize capacity. The information capacity is first evaluated for a small scale protein array, with only a few protein targets. We believe this is the first effort to evaluate the capacity of a protein array channel. For this purpose models of the proteomic channel's noise characteristics and receptor non-idealities, based on experimental prototypes, are constructed. Kernel methods are employed to extend the capacity evaluation to larger sized protein arrays that can potentially have thousands of distinct protein targets. A specially designed kernel which we call the Proteomic Kernel is also proposed. This kernel incorporates knowledge about the biophysics of target and receptor interactions into the cost function employed for evaluation of channel capacity.;For respiratory estimation this thesis investigates estimation of breathing-rate and lung-volume using multiple non-invasive sensors under motion artifact and high noise conditions. A spirometer signal is used as the gold standard for evaluation of errors. A novel algorithm called the segregated envelope and carrier (SEC) estimation is proposed. This algorithm approximates the spirometer signal by an amplitude modulated signal and segregates the estimation of the frequency and amplitude in-formation. Results demonstrate that this approach enables effective estimation of both breathing rate and lung volume. An adaptive algorithm based on a combination of Gini kernel machines and wavelet filltering is also proposed. This algorithm is titled the wavelet-adaptive Gini (or WAGini) algorithm, it employs a novel wavelet trans-form based feature extraction frontend to classify the subject's underlying respiratory state. This information is then employed to select the parameters of the adaptive kernel machine based on the subject's respiratory state. Results demonstrate significant improvement in breathing rate estimation when compared to traditional respiratory estimation techniques.
机译:本文研究了基于核方法的设计噪声鲁棒信息检索技术。提出了两种生物传感应用的算法:(1)高通量蛋白质阵列和(2)非侵入性呼吸信号估计。我们蛋白质阵列设计的主要目标是通过使用最少数量的受体斑点来检测大量蛋白质靶标,从而使通量最大化。这是通过将蛋白质阵列视为通讯通道并根据其受体探针评估其信息传输能力来实现的。在此框架中,通道容量可用作优化探头设计的工具。最佳探针是使容量最大化的探针。首先评估仅具有少量蛋白质靶标的小型蛋白质阵列的信息容量。我们认为这是评估蛋白质阵列通道容量的第一个尝试。为此,基于实验原型,构建了蛋白质组通道的噪声特征和受体非理想性模型。使用内核方法将容量评估扩展到可能具有数千个不同蛋白质靶标的较大尺寸的蛋白质阵列。还提出了一种特别设计的内核,我们称之为蛋白质组内核。该内核将有关靶标和受体相互作用的生物物理学知识整合到用于评估通道容量的成本函数中。为了进行呼吸估计,本论文研究了在运动伪影和高伪影下使用多个无创传感器对呼吸速率和肺活量的估计。噪音条件。肺活量计信号用作评估错误的金标准。提出了一种新颖的算法,称为隔离包络和载波(SEC)估计。该算法通过振幅调制信号来近似肺活量计信号,并隔离频率和振幅信息的估计。结果表明,这种方法可以有效估计呼吸频率和肺活量。提出了一种基于基尼核机和小波填充相结合的自适应算法。该算法称为小波自适应基尼(或WAGini)算法,它采用了一种新颖的基于小波变换的特征提取前端来对受试者的基础呼吸状态进行分类。然后,该信息用于根据受试者的呼吸状态选择自适应内核机的参数。与传统的呼吸估算技术相比,结果表明呼吸速率估算有了显着改善。

著录项

  • 作者

    Khan, Hassan Aqeel.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号