首页> 外文学位 >Highly Physical Solar Radiation Pressure Modeling During Penumbra Transitions
【24h】

Highly Physical Solar Radiation Pressure Modeling During Penumbra Transitions

机译:半影过渡期间的高物理太阳辐射压力建模

获取原文
获取原文并翻译 | 示例

摘要

Solar radiation pressure (SRP) is one of the major non-gravitational forces acting on spacecraft. Acceleration by radiation pressure depends on the radiation flux; on spacecraft shape, attitude, and mass; and on the optical properties of the spacecraft surfaces. Precise modeling of SRP is needed for dynamic satellite orbit determination, space mission design and control, and processing of data from space-based science instruments. During Earth penumbra transitions, sunlight is passing through Earth's lower atmosphere and, in the process, its path, intensity, spectral composition, and shape are significantly affected.;This dissertation presents a new method for highly physical SRP modeling in Earth's penumbra called Solar radiation pressure with Oblateness and Lower Atmospheric Absorption, Refraction, and Scattering (SOLAARS). The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. This dissertation aims to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects due to solar radiation passing through the troposphere and stratosphere are modeled, and the results are tabulated to significantly reduce computational cost. SOLAARS includes new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the spatial and temporal variability in lower atmospheric conditions. A new approach to modeling the influence of Earth's polar flattening draws on past work to provide a relatively simple but accurate method for this important effect.;Previous penumbra SRP models tend to lie at two extremes of complexity and computational cost, and so the significant improvement in accuracy provided by the complex models has often been lost in the interest of convenience and efficiency. This dissertation presents a simple model which provides an accurate alternative to the full, high precision SOLAARS model with reduced complexity and computational cost. This simpler method is based on curve fitting to results of the full SOLAARS model and is called SOLAARS Curve Fit (SOLAARS-CF).;Both the high precision SOLAARS model and the simpler SOLAARS-CF model are applied to the Gravity Recovery and Climate Experiment (GRACE) satellites. Modeling results are compared to the sub-nm/s2 precision GRACE accelerometer data and the results of a traditional penumbra SRP model. These comparisons illustrate the improved accuracy of the SOLAARS and SOLAARS-CF models. A sensitivity analyses for the GRACE orbit illustrates the significance of various input parameters and features of the SOLAARS model on results.;The SOLAARS-CF model is applied to a study of penumbra SRP and the Earth flyby anomaly. Beyond the value of its results to the scientific community, this study provides an application example where the computational efficiency of the simplified SOLAARS-CF model is necessary. The Earth flyby anomaly is an open question in orbit determination which has gone unsolved for over 20 years. This study quantifies the influence of penumbra SRP modeling errors on the observed anomalies from the Galileo, Cassini, and Rosetta Earth flybys. The results of this study prove that penumbra SRP is not an explanation for or significant contributor to the Earth flyby anomaly.
机译:太阳辐射压力(SRP)是作用在航天器上的主要非重力之一。辐射压力引起的加速度取决于辐射通量;关于航天器的形状,姿态和质量;以及航天器表面的光学特性。 SRP的精确建模对于动态卫星轨道确定,太空任务设计和控制以及来自太空科学仪器的数据处理是必需的。在地球半影过渡期间,太阳光正在穿过地球的低层大气,并且在此过程中,其路径,强度,光谱组成和形状都受到显着影响。本论文提出了一种在地球半影中进行高度物理SRP建模的新方法,称为太阳辐射。扁率和较低的大气吸收,折射和散射(SOLAARS)。基本的几何形状和方法反映了过去的工作,在该工作中,太阳辐射场是使用许多光线建模的,而不是将太阳视为单点光源。本文旨在阐明这种方法,简化其实现,并建模先前被忽略的因素。以更直观,更完整的方式描述了半影太阳辐射场建模所涉及的复杂几何形状,以简化实现。对由于穿过对流层和平流层的太阳辐射引起的大气影响进行了建模,并将结果制成表格以显着降低计算成本。 SOLAARS包括对大气影响进行建模的新的,更有效和准确的方法,使我们能够考虑较低大气条件下的时空变化。一种模拟地球极地扁平化影响的新方法可以借鉴过去的工作,从而为实现这一重要效果提供一种相对简单但准确的方法。;以前的半影SRP模型往往在复杂性和计算成本上处于两个极端,因此需要进行重大改进为了方便和效率,通常会丢失复杂模型提供的准确性。本文提出了一个简单的模型,它为完整,高精度的SOLAARS模型提供了准确的替代方案,同时降低了复杂性和计算成本。这种更简单的方法基于对整个SOLAARS模型的结果进行曲线拟合的方法,称为SOLAARS曲线拟合(SOLAARS-CF)。;高精度SOLAARS模型和更简单的SOLAARS-CF模型均用于重力恢复和气候实验(GRACE)卫星。将建模结果与亚nm / s2精度的GRACE加速度计数据和传统半影SRP模型的结果进行比较。这些比较说明了SOLAARS和SOLAARS-CF模型的准确性提高。对GRACE轨道的灵敏度分析表明了SOLAARS模型的各种输入参数和特征对结果的重要性。SOLAARS-CF模型用于研究半影SRP和地球飞越异常。除了其结果对科学界的价值外,本研究提供了一个应用示例,其中简化的SOLAARS-CF模型的计算效率是必需的。地球飞越异常是确定轨道的一个悬而未决的问题,二十多年来一直未解决。这项研究量化了半影SRP建模误差对Galileo,Cassini和Rosetta Earth飞越所观测到的异常的影响。这项研究的结果证明,半影SRP不能解释或解释地球飞越异常。

著录项

  • 作者

    Robertson, Robert V.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Aerospace engineering.;Astrophysics.;Optics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号