首页> 外文学位 >Modeling Uncertainty in Large-Scale Urban Traffic Networks
【24h】

Modeling Uncertainty in Large-Scale Urban Traffic Networks

机译:大型城市交通网络中的不确定性建模

获取原文
获取原文并翻译 | 示例

摘要

Recent work has proposed using aggregate relationships between urban traffic variables--- i.e., Macroscopic Fundamental Diagrams (MFDs)---to describe aggregate traffic dynamics in urban networks. This approach is particularly useful to unveil and explore the effects of various networkwide control strategies. The majority of modeling work using MFDs hinges upon the existence of well-defined MFDs without consideration of uncertain behaviors. However, both empirical data and theoretical analysis have demonstrated that MFDs are expected to be uncertain due to inherent instabilities that exist in traffic networks. Fortunately, sufficient amounts of adaptive drivers who re-route to avoid congestion have been proven to help eliminate the instability of MFDs. Unfortunately, drivers cannot re-route themselves adaptively all the time as routing choices are controlled by multiple factors, and the presence of adaptive drivers is not something that traffic engineers can control. Since MFDs have shown promise in the design and control of urban networks, it is important to seek another strategy to mitigate or eliminate the instability of MFDs. Furthermore, it is necessary to develop a framework to account for the uncertain phenomena that emerges on the macroscopic, network-wide level to address these unavoidable stochastic behaviors.;This first half of this work investigates another strategy to eliminate inherent network instabilities and produce more reliable MFDs that is reliable and controllable from an engineering perspective---the use of adaptive traffic signals. A family of adaptive signal control strategies is examined on two abstractions of an idealized grid network using an interactive simulation and analytical model. The results suggest that adaptive traffic signals should provide a stabilizing influence that provides more well-defined MFDs. Adaptive signal control also both increases average flows and decreases the likelihood of gridlock when the network is moderately congested. The benefits achieved at these moderately congested states increase with the level of signal adaptivity. However, when the network is extremely congested, vehicle movements become more constrained by downstream congestion and queue spillbacks than by traffic signals, and adaptive traffic signals appear to have little to no effect on the network or MFD. When a network is extremely congested, other strategies should be used to mitigate the instability, like adaptively routing drivers. Therefore, without sufficient amounts of adaptive drivers, the instability of MFDs could be somewhat controlled, but it cannot be eliminated completely. This is results in more reliable MFDs until the network enters heavily congested states.;The second half of this work uses stochastic differential equations (SDEs) to depict the evolutionary dynamics of urban network while accounting for unavoidable uncertain phenomena. General analytical solutions of SDEs only exist for linear functions. Unfortunately, most MFDs observed from simulation and empirical data follow non-linear functions. Even the most simplified theoretical model is piecewise linear with breakpoints that cannot be readily accommodated by the linear SDE approach. To overcome this limitation, the SDE well-known solutions are used to develop an approximate solution method that relies on the discretization of the continuous state space. This process is memoryless and results in the development of a computationally efficient Markov Chain (MC) framework. The MC model is also supported by a well-developed theory which facilitates the estimation of future states or steady state equilibrium conditions in a network that explicitly accounts for MFD uncertainty. Due to the fact that current formalization of Markov Chains is restricted with a countable state space, some assumptions which redefine the traffic state and stochastic dynamic process need to be set for the MC model application in dynamic traffic analysis. These assumptions could be sabotaged by inappropriate parameter selections, producing excessive errors in analytical solutions. Therefore, a parametric study is performed here to illustrate how to select two key parameters, i.e. bin size and time interval to optimize the MC models and minimize errors.;The major advantage of MC models is its wide flexibility, which has been demonstrated by showing how this method could well handle a wide variety of variables. A family of numerical tests are designed to include instability of MFD model, stochastic traffic demand, different city layouts and different forms of MFDs in the scenarios under static metering strategies. The results suggest that analytical solutions derived from MC models could accurately predict the future traffic state at any moment. Furthermore, the theoretical analysis also illustrates that Markov chains could easily model dynamic traffic control based on traffic state and pre-determined time-varying strategies by adjusting the transition matrix. Overall, the developed MC models are promising in the dynamic analysis of complicated urban network control under uncertainty for which simpler algebraic solutions do not exist.
机译:最近的工作提出了使用城市交通变量之间的聚合关系(即宏观基本图(MFD))来描述城市网络中的总交通动态。这种方法对于揭示和探索各种网络范围控制策略的效果特别有用。使用MFD进行的大多数建模工作都取决于定义明确的MFD的存在,而不考虑不确定的行为。但是,经验数据和理论分析均表明,由于交通网络中存在固有的不稳定性,因此MFD预计是不确定的。幸运的是,事实证明,有足够数量的自适应驱动程序可以重新安排路线以避免拥堵,从而有助于消除MFD的不稳定性。不幸的是,由于路由选择受多种因素控制,因此驾驶员无法一直自适应地进行自身的路线调整,而自适应驾驶员的出现并不是交通工程师可以控制的。由于MFD在城市网络的设计和控制中已显示出希望,因此寻求另一种缓解或消除MFD不稳定的策略非常重要。此外,有必要建立一个框架来解决在宏观,网络范围内出现的不确定现象,以解决这些不可避免的随机行为。;这项工作的前半部分研究了另一种消除固有网络不稳定性并产生更多不确定性的策略。从工程的角度来看,可靠的MFD是可靠且可控的-使用自适应交通信号。使用交互式仿真和分析模型,在理想化网格网络的两个抽象上检查了一系列自适应信号控制策略。结果表明,自适应交通信号应提供稳定的影响,从而提供更加明确的MFD。当网络适度拥塞时,自适应信号控制还可以增加平均流量,并降低发生僵局的可能性。在这些中等拥塞状态下获得的好处随着信号适应性水平的提高而增加。但是,当网络非常拥挤时,车辆的移动受到下游拥塞和排队溢出的限制比受交通信号的约束更大,自适应交通信号似乎对网络或MFD几乎没有影响。当网络非常拥挤时,应使用其他策略来减轻不稳定性,例如自适应路由驱动程序。因此,如果没有足够数量的自适应驱动器,MFD的不稳定性可以得到某种程度的控制,但不能完全消除。在网络进入严重拥塞状态之前,这将导致更可靠的MFD。 SDE的常规解析解仅针对线性函数存在。不幸的是,从仿真和经验数据中观察到的大多数MFD都遵循非线性函数。即使是最简化的理论模型,也是具有断点的分段线性模型,线性SDE方法无法轻易适应断点。为了克服此限制,使用SDE众所周知的解决方案来开发一种依赖连续状态空间离散化的近似解决方法。该过程是无记忆的,并导致了计算效率高的马尔可夫链(MC)框架的发展。 MC模型还得到了完善的理论的支持,该理论有助于估计网络中明确表示MFD不确定性的未来状态或稳态平衡条件。由于当前马尔可夫链的形式化受到可数状态空间的限制,因此需要为MC模型在动态交通分析中的应用设置一些重新定义交通状态和随机动态过程的假设。不适当的参数选择可能会破坏这些假设,从而在分析解决方案中产生过多的错误。因此,这里进行了参数研究,以说明如何选择两个关键参数,即bin大小和时间间隔,以优化MC模型并最大程度地减少误差。MC模型的主要优点是其广泛的灵活性,这已通过展示了这种方法如何很好地处理各种各样的变量。设计了一系列数值测试,其中包括静态计量策略下场景中的MFD模型的不稳定性,随机交通需求,不同的城市布局和不同形式的MFD。结果表明,基于MC模型的分析解决方案可以随时准确地预测未来的交通状况。此外理论分析还表明,马尔可夫链可以通过调整过渡矩阵轻松地基于交通状态和预定的时变策略对动态交通控制进行建模。总体而言,所开发的MC模型在不确定性下对复杂城市网络控制的动态分析中很有前途,而对于这些不确定性,尚无较简单的代数解。

著录项

  • 作者

    Gao, Xueyu.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号