首页> 外文学位 >Advanced Control Schemes for High-Bandwidth Multiphase Voltage Regulators.
【24h】

Advanced Control Schemes for High-Bandwidth Multiphase Voltage Regulators.

机译:高带宽多相稳压器的高级控制方案。

获取原文
获取原文并翻译 | 示例

摘要

Advances in transistor-integration technology and multi-core technology of the latest microprocessors have driven transient requirements to become more and more stringent. Rather than relying on the bulky output capacitors as energy-storage devices, increasing the control bandwidth (BW) of the multiphase voltage regulator (VR) is a more cost-effective and space-saving approach. However, it is found that the stability margin of current-mode control in high-BW design is very sensitive to operating conditions and component tolerance, depending on the performance of the current-sensing techniques, modulation schemes, and interleaving approaches. The primary objective of this dissertation is to investigate an advanced multiphase current-mode control, which provides accurate current sensing, enhances the stability margin in high-BW design, and adaptively compensates the parameter variations.;Firstly, an equivalent circuit model for generic current-mode controls using DCR current sensing is developed to analyze the impact of component tolerance in high-BW design. Then, the existing state-of-the-art auto-tuning method used to improve current-sensing accuracy is reviewed, and the deficiency of using this method in a multiphase VR is identified. After that, enlightened by the proposed model, a novel auto-tuning method is proposed. This novel method features better tuning performance, noise-insensitivity, and simpler implementation than the state-of-the-art method.;Secondly, the current state-of-the-art adaptive current-mode control based on constant-frequency PWM is reviewed, and its inability to maintain adequate stability margin in high-BW design is recognized. Therefore, a new external ramp compensation technique is proposed to keep the stability margin insensitive to the operating conditions and component tolerance, so the proposed high-BW constant-frequency control can meet the transient requirement without the presence of bulky output capacitors. The control scheme is generic and can be used in various kinds of constant-frequency controls, such as peak-current-mode, valley-current-mode, and average-current-mode configurations.;Thirdly, an interleaving technique incorporating an adaptive PLL loop is presented, which enables the variable-frequency control to push the BW higher than proposed constant-frequency control, and avoids the beat-frequency input ripple. A generic small-signal model of the PLL loop is derived to investigate the stability issue caused by the parameter variations. Then, based on the proposed model, a simple adaptive control is developed to allow the BW of the PLL loop to be anchored at the highest phase margin. The adaptive PLL structure is applicable to different types of variable-frequency control, including constant on-time control and ramp pulse modulation.;Fourthly, a hybrid interleaving structure is explored to simplify the implementation of the adaptive PLL structure in an application with more phases. It combines the adaptive PLL loop with a pulse-distribution technique to take the advantage of the high-BW design and fast transient response without adding a burden to the controller implementation.;As a conclusion, based on the proposed analytical models, effective control concepts, systematic optimization strategies, viable implementations are fully investigated for high-BW current-mode control using different modulation techniques. Moreover, all the modeling results and the system performance are verified through simulation with a practical output filter model and an advanced mixed-signal experimental platform based on the latest MHz VR design on the laptop motherboard. In consequence, the multiphase VRs in future computation systems can be scalable easier with proposed multiphase configurations, increase the system reliability with proposed adaptive loop compensation, and minimize the total system footprint of the VR with the superior transient performance.
机译:晶体管集成技术和最新微处理器的多核技术的进步推动了瞬态要求变得越来越严格。与其依赖笨重的输出电容器作为储能设备,不如增加多相电压调节器(VR)的控制带宽(BW),是一种更具成本效益和节省空间的方法。但是,发现高带宽设计中电流模式控制的稳定性裕度对工作条件和组件容差非常敏感,这取决于电流检测技术,调制方案和交织方法的性能。本文的主要目的是研究一种先进的多相电流模式控制,该控制可提供精确的电流感应,提高高带宽设计中的稳定性裕度,并自适应地补偿参数变化。首先,通用电流的等效电路模型开发了使用DCR电流感测的模式控制来分析高BW设计中组件容差的影响。然后,回顾了用于提高电流感测精度的现有最先进的自动调谐方法,并确定了在多相VR中使用该方法的不足。此后,在提出的模型的启发下,提出了一种新的自整定方法。这种新颖的方法具有比最新方法更好的调谐性能,对噪声不敏感的特性以及更简单的实现。第二,基于恒频PWM的当前最新自适应电流模式控制是进行了审查,并认识到它无法在高带宽设计中保持足够的稳定性裕度。因此,提出了一种新的外部斜坡补偿技术,以保持稳定裕度对工作条件和组件容限不敏感,因此所提出的高带宽恒定频率控制可以满足瞬态要求,而无需使用笨重的输出电容器。该控制方案是通用的,可用于各种恒定频率控制中,例如峰值电流模式,谷值电流模式和平均电流模式配置。第三,采用自适应PLL的交织技术提出了一种环路,该环路使变频控制能够将BW推高到提出的恒定频率控制之上,并避免了拍频输入纹波。推导了PLL环路的通用小信号模型,以研究由参数变化引起的稳定性问题。然后,基于提出的模型,开发了一种简单的自适应控制,以允许PLL环路的带宽固定在最高相位裕量处。自适应PLL结构适用于不同类型的可变频率控制,包括恒定导通时间控制和斜坡脉冲调制;第四,探索一种混合交织结构以简化具有更多相位的应用中的自适应PLL结构的实现。它结合了自适应PLL环路和脉冲分配技术,以利用高带宽设计和快速瞬态响应的优势,而不会给控制器的实现增加负担。总之,基于所提出的分析模型,有效的控制概念,系统优化策略,可行的实现方案已针对使用不同调制技术的高BW电流模式控制进行了充分研究。此外,通过使用实际输出滤波器模型和基于笔记本电脑主板上最新MHz VR设计的高级混合信号实验平台进行仿真,可以验证所有建模结果和系统性能。因此,未来的计算系统中的多相VR可以通过建议的多相配置轻松扩展,通过建议的自适应环路补偿提高系统可靠性,并以出色的瞬态性能将VR的总系统占地面积降至最低。

著录项

  • 作者

    Liu, Pei-Hsin.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号