首页> 外文学位 >Learning and monitoring of spatio-temporal fields with sensing robots.
【24h】

Learning and monitoring of spatio-temporal fields with sensing robots.

机译:用传感机器人学习和监视时空场。

获取原文
获取原文并翻译 | 示例

摘要

This thesis proposes new algorithms for a group of sensing robots to learn a parametric model for a dynamic spatio-temporal field, then based on the learned model trajectories are planned for sensing robots to best estimate the field. In this thesis we call these two parts learning and monitoring, respectively.;For the learning, we first introduce a parametric model for the spatio-temporal field. We then propose a family of motion strategies that can be used by a group of mobile sensing robots to collect point measurements about the field. Our motion strategies are designed to collect enough information from enough locations at enough different times for the robots to learn the dynamics of the field. In conjunction with these motion strategies, we propose a new learning algorithm based on subspace identification to learn the parameters of the dynamical model. We prove that as the number of data collected by the robots goes to infinity, the parameters learned by our algorithm will converge to the true parameters.;For the monitoring, based on the model learned from the learning part, three new informative trajectory planning algorithms are proposed for the robots to collect the most informative measurements for estimating the field. Kalman filter is used to calculate the estimate, and to compute the error covariance of the estimate. The goal is to find trajectories for sensing robots that minimize a cost metric on the error covariance matrix. We propose three algorithms to deal with this problem. First, we propose a new randomized path planning algorithm called Rapidly-exploring Random Cycles (RRC) and its variant RRC* to find periodic trajectories for the sensing robots that try to minimize the largest eigenvalue of the error covariance matrix over an infinite horizon. The algorithm is proven to find the minimum infinite horizon cost cycle in a graph, which grows by successively adding random points. Secondly, we apply kinodynamic RRT* to plan continuous trajectories to estimate the field. We formulate the evolution of the estimation error covariance matrix as a differential constraint and propose extended state space and task space sampling to fit this problem into classical RRT* setup. Thirdly, Pontryagin's Minimum Principle is used to find a set of necessary conditions that must be satisfied by the optimal trajectory to estimate the field.;We then consider a real physical spatio-temporal field, the surface water temperature in the Caribbean Sea. We first apply the learning algorithm to learn a linear dynamical model for the temperature. Then based on the learned model, RRC and RRC* are used to plan trajectories to estimate the temperature. The estimation performance of RRC and RRC* trajectories significantly outperform the trajectories planned by random search, greedy and receding horizon algorithms.
机译:本文提出了一种新的算法,用于一组传感机器人学习动态时空场的参数模型,然后根据学习的模型轨迹规划传感机器人,以最佳地估计该场。在本文中,我们将这两个部分分别称为学习和监视。;对于学习,我们首先介绍时空场的参数模型。然后,我们提出了一系列运动策略,一组移动感测机器人可以使用它们来收集有关场的点测量。我们的运动策略旨在在足够不同的时间从足够的位置收集足够的信息,以使机器人学习领域的动态。结合这些运动策略,我们提出了一种基于子空间识别的新学习算法,以学习动力学模型的参数。我们证明了随着机器人收集的数据数量达到无穷大,我们的算法学习到的参数将收敛到真实参数。对于监控,基于从学习部分中学到的模型,三种新的信息性轨迹规划算法建议机器人收集最多信息的测量值以估计该领域。卡尔曼滤波器用于计算估计,并计算估计的误差协方差。目的是找到感测机器人的轨迹,以使误差协方差矩阵上的成本度量最小化。我们提出了三种算法来解决这个问题。首先,我们提出了一种新的随机路径规划算法,称为快速探索随机循环(RRC)及其变体RRC *,以找到用于感测机器人的周期性轨迹,这些轨迹试图在无限的范围内最小化误差协方差矩阵的最大特征值。实践证明,该算法可以在图形中找到最小的无限地平线成本周期,该周期通过相继添加随机点而增长。其次,我们使用运动动力学RRT *来计划连续轨迹以估计磁场。我们将估计误差协方差矩阵的演化公式化为差分约束,并提出扩展状态空间和任务空间采样,以将该问题适合经典RRT *设置。第三,使用庞特里亚金的最小原理来找到最佳轨迹必须满足的一组必要条件,以估计该场。然后,我们考虑一个真实的物理时空场,即加勒比海的地表水温。我们首先应用学习算法来学习温度的线性动力学模型。然后根据学习的模型,使用RRC和RRC *计划轨迹以估算温度。 RRC和RRC *轨迹的估计性能明显优于随机搜索,贪婪和后退地平线算法所计划的轨迹。

著录项

  • 作者

    Lan, Xiaodong.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Robotics.;Computer science.;Environmental science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号