首页> 外文学位 >Using self-assembly to control nanoscale morphology in semiconducting polymers for application in organic photovoltaics.
【24h】

Using self-assembly to control nanoscale morphology in semiconducting polymers for application in organic photovoltaics.

机译:使用自组装控制半导体聚合物中用于有机光伏的纳米级形态。

获取原文
获取原文并翻译 | 示例

摘要

Organic photovoltaics (OPVs) represent a promising alternative to silicon based photovoltaics because of they are lower cost and easier to process then current technology. A typical OPV consists of a semiconducting polymer that acts as the electron donor and primary photoabsorber combined with an electron acceptor, often a C60 fullerene derivative. Due to the low exciton diffusion length in organic blends, the two components must be blended on a fine enough length scale to enable efficient electron transfer. However, the components still need to be separated enough to maintain high conductivity in the pure domains for the extraction of the carriers. It can be difficult to create such a demanding structure and optimal morphology reproducibly. This work focuses on controlling the semiconducting polymer through self-assembly as a way to tune the overall nanoscale architecture of a blended system.;In the first part of this dissertation, the effect of changing the crystallinity and orientation of semiconducting polymers will be examined as a way to tune the nanoscale morphology of a polymer/fullerene blend. The resulting device performance will be analyzed to gain further understanding of the optimal morphology required to maximize efficiency. Three polymer systems are used to explore how small changes in the crystallinity, regioregularity, and chain conformation can dramatically alter the resulting OPV device performance. Additionally, the changes in polymer morphology with two fullerene incorporation techniques, blend casting and sequential processing, will be compared. Since polymer morphology and characteristics can be determined, it will be shown that the processing method can be selected to match each intrinsic polymer, which are often more difficult to control.;In the second part, self-assembly will be used as a method to precisely direct the polymer morphology in films and solution. It will be shown that through the use of an inorganic host, individual chains can be straightened to dramatically increase the hole mobility in the polymer backbone. The ability to straighten polymer chains will be further expanded upon by using solution self-assembly to create a 3D conductive polymer network. Upon the addition of fullerene to this network, an energy cascade can be created to enable efficient charge separation through the formation of stable polarons.
机译:有机光伏(OPV)代表了一种有前途的硅基光伏替代品,因为它们的成本更低,并且比现有技术更易于加工。典型的OPV由半导体聚合物组成,该半导体聚合物与电子受体(通常为C60富勒烯衍生物)结合用作电子给体和初级光吸收剂。由于有机混合物中激子的扩散长度很短,因此必须在足够细的长度范围内将两种组分进行混合,以实现有效的电子转移。但是,仍然需要充分分离组分以在纯区域中保持高电导率以提取载体。可重复创建这种要求的结构和最佳形态可能很困难。这项工作的重点是通过自组装控制半导体聚合物,以调节共混体系的整体纳米级体系结构。在本论文的第一部分中,将研究改变半导体聚合物的结晶度和取向的影响。一种调节聚合物/富勒烯共混物纳米级形态的方法。将分析最终的器件性能,以进一步了解最大化效率所需的最佳形态。使用三种聚合物系统来探索结晶度,区域规则性和链构象的微小变化如何显着改变所得的OPV器件性能。另外,将比较两种富勒烯掺入技术(共混浇铸和顺序加工)引起的聚合物形态变化。由于可以确定聚合物的形态和特性,因此表明可以选择一种加工方法来匹配每种固有聚合物,这通常更难控制。在第二部分中,将使用自组装方法精确地指导薄膜和溶液中的聚合物形态。将表明,通过使用无机主体,单个链可以被拉直以显着增加聚合物主链中的空穴迁移率。通过使用溶液自组装来创建3D导电聚合物网络,可以进一步扩展伸直聚合物链的能力。将富勒烯添加到该网络后,可以创建一个能量级联,以通过形成稳定的极化子实现有效的电荷分离。

著录项

  • 作者

    Ferreira, Amy Susan.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Physical chemistry.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号