首页> 外文学位 >Simulation of regional groundwater flow and the effects of future climate change on water resources in the Nebraska Sand Hills.
【24h】

Simulation of regional groundwater flow and the effects of future climate change on water resources in the Nebraska Sand Hills.

机译:内布拉斯加州沙丘地区地下水流的模拟以及未来气候变化对水资源的影响。

获取原文
获取原文并翻译 | 示例

摘要

Lakes are integral parts of groundwater flow systems in many environments. Yet, few exceptions exist in which large numbers are simulated in regional settings, due to data and computational constraints. The first modeling study of this kind was performed in the Nebraska Sand Hills, the largest (~50,000 km2) grass-stabilized dune region in the Western Hemisphere, containing thousands of small closed-basin lakes (and wetlands) in hydraulic connection with the High Plains aquifer. In the semi-arid climate, groundwater recharge is critical to the high water table and strong discharge that maintains lakes, streams, and wetlands---features providing habitat for many unique species, productivity of a large beef cattle industry, and important to salt dust emissions. Co-evolution of the ecosystems, hydrologic processes, and regional climate over the past several hundred years has created a self-sustaining system, but a system that if disturbed too greatly may not persist. In the context of 21st century climate change, individual lake dynamics at annual time scales are of limited interest. Future groundwater recharge scenarios were developed from decadal changes in the difference between precipitation and evapotranspiration from 16 Global Circulation Models and three emissions scenarios. The central tendency is for minor changes, with a much larger uncertainty range. Vadose zone modeling of steady vertical flow shows large spatial variation of soil moisture lag times in the extant climate, and slight changes under future conditions, with an average around five years, shorter than the decade-centennial time scale of interest. A numerical groundwater flow model was developed, calibrated, and used to simultaneously simulate large-scale aquifer behavior, stream baseflows, and the spatial distribution, and total area and numbers of the many scattered lakes and wetlands. Simulated hydraulic heads were downscaled for comparison with the fine-resolution digital elevation model. Response time of groundwater-controlled surface water features suggests that climate change impacts are greatly delayed and dispersed by the groundwater system, but non-linearly dependent upon groundwater recharge regime.
机译:在许多环境中,湖泊是地下水流系统不可或缺的部分。但是,由于数据和计算限制,很少有例外情况可以在区域设置中模拟大量数字。此类首次建模研究是在内布拉斯加州沙丘地区进行的,内布拉斯加州沙丘地区是西半球最大的草皮稳定沙丘区,其中包含成千上万个与高海拔水力相连的小型封闭盆地湖泊(和湿地)。平原含水层。在半干旱气候下,地下水补给对于维持较高的地下水位和维持湖泊,溪流和湿地的强劲排水至关重要-这些特征可为许多独特物种提供栖息地,大型肉牛产业的生产力以及对盐分至关重要粉尘排放。在过去的几百年中,生态系统,水文过程和区域气候的共同演化创造了一个自我维持的系统,但是如果受到太大的干扰,这个系统可能不会持续下去。在21世纪气候变化的背景下,人们对年度时间尺度上的各个湖泊动态的兴趣有限。未来的地下水补给情景是根据16种全球环流模型和三种排放情景的降水量与蒸散量之间的年代际变化得出的。中心趋势是微小的变化,不确定性范围更大。稳定垂直流的渗流带模拟显示,在现存气候中土壤水分滞后时间的空间变化较大,而在未来条件下则略有变化,平均五年左右,比相关的十年百年时间尺度短。开发,校准了一个数值地下水流模型,用于同时模拟大规模分散水层的行为,河流基流,空间分布,许多分散的湖泊和湿地的总面积和数量。缩小了模拟液压头的尺寸,以便与高分辨率的数字高程模型进行比较。地下水控制的地表水特征的响应时间表明,地下水系统极大地延迟和分散了气候变化的影响,但非线性地取决于地下水的补给方式。

著录项

  • 作者

    Rossman, Nathan R.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Hydrologic sciences.;Atmospheric sciences.;Geology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 334 p.
  • 总页数 334
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号