首页> 外文学位 >Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications.
【24h】

Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications.

机译:用于清洁能源应用的热电和永磁纳米颗粒的开发。

获取原文
获取原文并翻译 | 示例

摘要

The global trend towards energy efficiency and environmental sustainability has generated a strong demand for clean energy technologies. Among the many energy solutions, the work in this dissertation contributes to two strategic goals: the reduction of fuel consumption in the transportation sector, and the increase of domestic wind power capacity. The key barriers to achieving these goals are materials challenges. Automobiles can be made more efficient by thermoelectric conversion of waste heat from the engine into electricity that can be used to power electrical components in the vehicle. Vehicles can forego petroleum fuel altogether by using electric or hybrid motors. Unfortunately, the conversion efficiency of current thermoelectric technology is too low to be considered economically feasible, and the permanent magnets used in electric vehicle motors and wind turbine generators require critical rare-earth elements that are economically unstable (often referred to as the "rare-earth crisis"). In order to combat these challenges, a "spark erosion" technique was utilized for producing nanoparticles that improve thermoelectric efficiency and contribute to the development of electromotors that do not require rare-earths.;In Chapter 2 of this dissertation, I describe the utilization of spark erosion for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was employed to synthesize p-type bismuth-antimony telluride (BST) and n-type skutterudite nanoparticles, using a relatively small laboratory apparatus, with low energy consumption. The compacted BST nanocomposite samples made from these nanoparticles exhibit a well-defined, 20--50 nm size nanograin microstructure, and show an enhanced Figure of merit, ZT, of 1.36 at 360 K due to a reduction in lattice thermal conductivity. The skutterudite nanocomposites also show reduced thermal conductivity but still require enhancement in the thermoelectric power factor. Such a technique is essential for providing inexpensive, oxidation-free nanoparticles required for fabricating high performance thermoelectric devices for power generation from waste heat, and for refrigeration.;We have investigated the spark erosion of MnBi, a promising rare-earth-free permanent magnet, and have determined that spark erosion provides the best approach for producing MnBi particles. The low-temperature phase of MnBi (LTP-MnBi) is an attractive rare-earth free permanent magnet material due it its high uniaxial magnetocrystalline anisotropy, which produces an unusually high coercivity at the elevated temperatures required for motor and generators. However, due to the peritectic Mn-Bi phase diagram and the slow interdiffusion of Mn and Bi below the 350°C phase change temperature, bulk samples of LTP-MnBi with high saturation magnetization (MS) have been difficult to achieve.;In Chapter 3, we describe the successful formation of high-purity bulk LTP-MnBi ingots and spark erosion of this material to produce single-domain particles of MnBi at an unprecedented rate. The bulk ingots have MS > 90 wt % of LTP-MnBi, and are formed by chill-casting and by vacuum-annealing of arc-melted ingots. The as-prepared powder then consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20--30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, albeit with HC of only a few kOe. If lightly milled, the agglomerates are broken up and yield an HC of 1 T and a maximum energy product of 3.0 MGOe.;The particles can be further engineered through milling, annealing, and/or solution processing in order to produce unique properties that hold promise to achieving the first bulk permanent magnet that utilizes the exchange-spring principle. In addition, we have found that due to the amorphous component of the spark-eroded powder, a cold compact can be magnetically oriented by crystallizing in a magnetic field. This crystallographic alignment is necessary for further improvement of the magnet energy density.
机译:能源效率和环境可持续性的全球趋势已产生了对清洁能源技术的强烈需求。在众多能源解决方案中,本论文的工作有助于实现两个战略目标:减少交通运输部门的燃料消耗,以及增加国内风力发电能力。实现这些目标的主要障碍是材料挑战。通过将来自发动机的废热热电转化为可用于为车辆中的电气组件提供动力的电,可以使汽车更加高效。车辆可以完全通过使用电动或混合动力发动机来放弃石油燃料。不幸的是,当前的热电技术的转换效率太低,以至于在经济上不可行,并且用于电动汽车电机和风力发电机的永磁体需要在经济上不稳定的关键稀土元素(通常称为“稀有元素”)。地球危机”)。为了应对这些挑战,采用了“火花腐蚀”技术来生产可提高热电效率并有助于发展不需要稀土的电动机的纳米粒子。在本论文的第二章中,我描述了利用火花腐蚀,以极高的速率生产高品质的热电纳米粒子,并具有增强的热电特性。使用该技术,使用相对较小的实验室设备,以低能耗合成了p型铋锑碲(BST)和n型方钴矿纳米颗粒。由这些纳米颗粒制成的压实的BST纳米复合材料样品具有良好定义的20--50 nm尺寸的纳米颗粒微结构,并且由于晶格导热系数的降低,在360 K时具有1.36的优异品质因数ZT。方钴矿纳米复合材料还显示出降低的热导率,但仍需要提高热电功率因数。这项技术对于提供廉价,无氧化的纳米颗粒至关重要,该纳米颗粒是制造高性能热电器件以利用废热发电和制冷所需的纳米颗粒;我们已经研究了有希望的无稀土永磁体MnBi的火花腐蚀。 ,并已确定火花腐蚀提供了生产MnBi颗粒的最佳方法。 MnBi(LTP-MnBi)的低温相是一种有吸引力的不含稀土的永磁材料,因为它具有很高的单轴磁晶各向异性,在电动机和发电机所需的高温下会产生异常高的矫顽力。然而,由于包晶的Mn-Bi相图和Mn和Bi在350°C相变温度以下的缓慢相互扩散,很难获得具有高饱和磁化强度(MS)的LTP-MnBi的大量样品。参见图3,我们描述了高纯度块状LTP-MnBi锭的成功形成和该材料的火花腐蚀,以前所未有的速率生产MnBi单畴颗粒。块状锭的MS> LTP-MnBi的90wt%,并且通过冷铸和通过电弧熔化的锭的真空退火形成。然后,所制备的粉末由无定形,结晶和超顺磁性颗粒组成,大部分为多孔聚集体。粉末的主要部分由20--30 nm的颗粒组成。短时间的退火会使无定形颗粒结晶,从而产生高力矩,尽管HC仅为几千金。如果轻度研磨,则团聚体会破碎,产生的HC为1 T,最大能量积为3.0 MGOe。;可以通过研磨,退火和/或固溶处理对颗粒进行进一步工程处理,以产生可保持有望实现首个利用交换弹簧原理的大块永磁体。另外,我们发现,由于火花腐蚀粉末的无定形成分,可以通过在磁场中结晶使冷成形体磁取向。为了进一步提高磁体能量密度,该晶体学取向是必需的。

著录项

  • 作者

    Nguyen, Phi-Khanh.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Materials Science.;Nanotechnology.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号