首页> 外文学位 >Improving Relational Machine Learning by Modeling Temporal Dependencies.
【24h】

Improving Relational Machine Learning by Modeling Temporal Dependencies.

机译:通过对时间依赖性进行建模来改善关系机器学习。

获取原文
获取原文并翻译 | 示例

摘要

Networks encode dependencies between entities (people, computers, proteins) and allow us to study phenomena across social, technological, and biological domains. These networks naturally evolve over time by the addition, deletion, and changing of links, nodes, and attributes. Existing work in Relational Machine Learning (RML) has ignored relational time series data consisting of dynamic graphs and attributes, even despite the importance of modeling these dynamics.;This dissertation investigates the problem of Relational Time-series Learning from dynamic attributed graph data, with the goal of improving the predictive quality of existing RML methods. In particular, we propose a framework for learning dynamic graph representations, as well as methods for the three representation discovery tasks of (i) dynamic node labeling, (ii) weighting, and (iii) prediction. In addition, techniques for modeling relational and temporal dependencies are proposed, along with efficient methods for discovering features, ensembles, as well as classification methods. The results demonstrate the importance of modeling both the relational and temporal dependencies as well as learning an appropriate graph data representation that captures these fundamental patterns. Furthermore, while previous work has focused on static graphs that are small, non-attributed, simple, or homogeneous, we instead have carefully designed generalized relational time-series models that are: (a) efficient with linear or nearly linear runtime, (b) scalable for big graph data, (c) flexible for a variety of data types and characteristics, and (d) capable of modeling attributed and heterogeneous relational time-series data. Finally, the proposed methods are shown to be scalable, effective, and flexible for a variety of real-world applications.
机译:网络对实体(人,计算机,蛋白质)之间的依存关系进行编码,并使我们能够研究跨社会,技术和生物领域的现象。这些网络会随着时间的推移自然地随着链接,节点和属性的添加,删除和更改而发展。关系机器学习(RML)的现有工作忽略了由动态图和属性组成的关系时间序列数据,尽管对这些动力学进行建模很重要。本论文从动态属性图数据研究关系时间序列学习的问题,提高现有RML方法的预测质量的目标。特别是,我们提出了一个学习动态图表示的框架,以及(i)动态节点标记,(ii)加权和(iii)预测这三种表示发现任务的方法。此外,还提出了用于建模关系和时间依存关系的技术,以及用于发现特征,集合和分类方法的有效方法。结果证明了对关系和时间相关性进行建模以及学习捕获这些基本模式的适当图形数据表示的重要性。此外,虽然先前的工作集中在小型,无属性,简单或齐次的静态图上,但我们精心设计了广义的关系时间序列模型,这些模型是:(a)在线性或接近线性运行时有效;(b )可扩展以用于大图数据,(c)灵活用于各种数据类型和特征,并且(d)能够建模属性和异构关系时间序列数据。最后,所提出的方法对于各种现实应用显示出可伸缩,有效和灵活的特点。

著录项

  • 作者

    Rossi, Ryan A.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Computer science.;Information science.;Artificial intelligence.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号