首页> 外文学位 >Heat transfer and flow in solar energy and bioenergy systems.
【24h】

Heat transfer and flow in solar energy and bioenergy systems.

机译:太阳能和生物能源系统中的热传递和流动。

获取原文
获取原文并翻译 | 示例

摘要

The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production.;The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems.;The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications.;The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced.;The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected that the proposed methods can provide useful information for engineers and researchers.
机译:在过去的二十年中,对清洁和对环境无害的能源需求一直是人们关注的重点。为了减轻相关的环境问题,通过开发更具成本效益的可再生能源技术来减少化石燃料的使用变得越来越重要。在各种类型的可再生能源中,太阳能和生物能源占很大比例。本文主要研究太阳能和生物能源系统中的热传递和流动,特别是集中式太阳能电厂(CSP)的热能存储(TES)系统和用于生物燃料生产的明渠藻类培养水道。论文对太阳能TES系统的数学建模,数值模拟和实验研究进行了探讨。首先,为了准确有效地模拟四种不同的固液TES构型中的导热液(HTF)和填充材料之间的共轭传热,理论上开发了有效的传热系数公式,并给出了公式通过将集总电容法(LCM)的有效性扩展到大比奥数,以及对该简化模型的验证/验证。其次,为利用相变材料(PCM)为热电联产厂的TES系统提供设计指导,提出了基于焓的一维瞬态模型,提出了一种通用的储罐容量确定策略和储能启动策略。然后进行了实验研究以探索一种新型的蓄热材料。还比较了这种新型存储材料和混凝土在400°C至500°C温度范围内的蓄热性能。在显热TES系统中,建议使用这种新型的蓄热材料代替高温运行的混凝土。本论文的第二部分主要研究用于生物燃料生产的明渠藻类培养跑道的数值和实验研究。根据拟议的ARID-HV藻类水道流场设计,通过实验和数值模拟来了解在ARID-HV藻类水道流场中通过在死区附近切开槽缝来增强流混合。提出了一种新的方法,该方法通过使用滚道中无质量流体颗粒(在入口表面的每个单元中居中)的无质量流体颗粒的时间和空间分布的统计信息来定量评估流动混合结果。希望该方法可以应用于藻类滚道流场的设计以及其他工程应用。第三部分详细介绍了高温熔融盐试验回路的施工工作。由于常规合成油的工作温度有限,为了获得更高的能量转换效率,在CSP工厂中始终需要更高的工作温度,这导致需要新一代HTF。目前,由亚利桑那大学领导的多研究所研究小组已提出卤化物盐共晶混合物(NaCl-KCl-ZnCl2)作为潜在的HTF潜在的未来CSP应用。已经测量了卤化物共晶盐的热物理性质。但是,这种新开发的卤化物低共熔盐尚未在循环回路中在高工作温度下进行传热系数测试。由于工作温度极高,因此要构建这样的测试系统是一项巨大的努力。因此,在本论文的第三部分中,将详细介绍实验室规模的测试系统的设计和所有设备的项目。本论文包括对太阳能和生物能源中的热传递和流动的研究。系统对可再生能源工程界特别感兴趣。预期所提出的方法可以为工程师和研究人员提供有用的信息。

著录项

  • 作者

    Xu, Ben.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Mechanical engineering.;Energy.;Engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 305 p.
  • 总页数 305
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号