首页> 外文学位 >Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis.
【24h】

Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis.

机译:高通量技术和多元分析研究了生物质焙烧,热解和气化的产品化学和工艺效率。

获取原文
获取原文并翻译 | 示例

摘要

Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently.;This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc.;Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures.;It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (<10min) are proposed to be optimal torrefaction conditions. 500°C is preferred to 700°C as primary pyrolysis temperature in two stage gasification because higher primary pyrolysis temperature resulted in more tar and less gasification char. Also, in terms of carbon yield, more carbon is lost in tar while less carbon is retained in gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work is suggested in the end.
机译:尽管对从生物质开发可再生能源的热情和不懈的努力,生物燃料生产的商业化和规模化仍面临压力和挑战。全球范围内正在测试新想法和新设施,旨在降低成本和提高产品价值。涉及分析化学,统计分析,工业工程,计算机仿真和数学建模等前沿技术,将现代元素不断整合到这项经典研究中。生物燃料生产商业化的挑战之一是生物质原料和产品的化学组成的复杂性。因此,不能有效地进行原料的选择和工艺优化。本文试图用传统方法和先进技术(热解分子束质谱)对生物质的热分解过程进行进一步的评价。着重研究了在不同温度下由生物质产生的热分解产物的数据库,找出传统方法与先进技术之间的关系,评估工艺效率和优化反应条件,比较常用的生物质原料,以及新的创新物种的研究。经济可行的原料制备概念等;实验室规模的石英管反应器和80il不锈钢样品杯与自动采样系统相结合,可模拟实际流化或夹带流反应器中发生的复杂反应。使用的两种主要的高通量分析技术是近红外光谱(NIR)和热解分子束质谱(Py-MBMS)。详细介绍了质量平衡,碳平衡和产品分布。热分解温度的变化范围是200°C至950°C。该研究中使用的原料包括典型的硬木和软木(红橡,白橡,黄杨,火炬松),快速生长的能源作物(柳枝switch)和流行的饲料作物(苜蓿),以及从这些材料及其原料中提取的生物炭。证明了Py-MBMS与MVA结合可以用作研究生物质组成及其热分解行为的快速分析工具。发现生物质组成的影响在很大程度上取决于热分解温度,因为在不同的温度下,生物质的组成会发生分解,而矿物对分解反应的影响也会发生变化。在低温(200-500°C)下,有机化合物归因于热分解产物的大部分变化。在更高的温度下,无机物极大地改变了碳水化合物以及木质素的热解途径。在气化中,还观察到气化焦油的形成受到蒸气和炭中灰分含量的影响。在实际反应器中,生物炭结构还与其他馏分发生相互作用,从而形成最终的热解和气化产物。基于对烘焙过程效率的评估,建议在275°C至300°C的温度范围内以较短的停留时间(<10分钟)作为最佳的烘焙条件。作为二级气化中的一级热解温度,相对于一级热解温度,优选500°C,因为一级热解温度较高会导致更多的焦油和较少的气化焦炭,因此优选为700℃。同样,就碳收率而言,使用700°C作为主要热解温度,焦油中损失的碳更多,而气体产品中保留的碳更少。另外,与热解蒸气的气化相比,发现热解炭在蒸汽气化期间产生更少的焦油和更多的气体。因此,建议干法焙烧可能是生物质气化的有效预处理方法,因为它可以在气化的一级热解步骤中大大提高热解炭的收率,从而降低整个气化产物的总焦油含量。最后建议今后的工作。

著录项

  • 作者

    Xiao, Li.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Wood sciences.;Statistics.;Analytical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 325 p.
  • 总页数 325
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号