首页> 外文学位 >Theoretical electronic structure of structurally modified graphene.
【24h】

Theoretical electronic structure of structurally modified graphene.

机译:结构改性石墨烯的理论电子结构。

获取原文
获取原文并翻译 | 示例

摘要

Graphene has emerged as a promising replacement for silicon in next-generation electronics and optoelectronic devices. If graphene is to be used in semiconductor devices, however, it must acquire an electronic band gap. Numerous approaches have been proposed to control the band gap of graphene, including the periodic patterning of defects. However, the mechanism for band gap opening and the associated physics in graphene patterned with defects remain unclear. Using both analytic theory and first-principles calculations, we show that periodic patterning of defects on graphene can open a large and tunable band gap, induce strong absorption peaks at optical wavelengths, and host a giant band gap quantum spin Hall phase. First, a geometric rule is analytically derived for the arrangements of defects that open a band gap in graphene, with one ninth of all possible patterns opening a band gap. Next, we perform ab-initio density functional calculations to compare the effects of structural vacancies, hexagonal BN dopants, and passivants on the electronic structure of graphene. Qualitatively, these three types of structural defects behave the same, with only slight differences in their resulting band structures. By adjusting the shape of structural defects, we show how to move the Dirac cones in reciprocal space in accordance with the tight-binding model for the anisotropic honeycomb lattice, while the fundamental mechanism for band gap opening remains the same. To quantitatively predict the band gap and optical properties of these materials, we employ many-body perturbation theory with Green's functions (GW/Bethe-Salpeter equation) to directly include electron-electron and electron-hole interactions. Structurally modified graphene shows a strong renormalization of the fundamental band gap over single particle descriptions, and a strong electron-hole interaction as indicated by strong exciton binding energies (> 0.5 eV). Finally, we show that structurally modified graphene can host a topologically insulating phase if spin-orbit interactions are included. Tight-binding calculations show that an insulating graphene nanomesh is also a quantum spin Hall insulator with a giant bulk band gap, an extremely valuable material for next-generation spintronics.
机译:石墨烯已经成为下一代电子产品和光电设备中硅的有前途的替代品。但是,如果将石墨烯用于半导体器件,则必须获得电子带隙。已经提出了许多方法来控制石墨烯的带隙,包括缺陷的周期性图案化。然而,带隙开口的机制以及石墨烯中缺陷形成的相关物理机制仍不清楚。使用分析理论和第一性原理计算,我们显示出定期对石墨烯上的缺陷进行构图可以打开较大且可调的带隙,在光波长处诱导出强吸收峰,并具有巨大的带隙量子自旋霍尔相。首先,通过分析得出用于打开石墨烯中带隙的缺陷排列的几何规则,所有可能图案中的九分之一会打开带隙。接下来,我们执行从头算密度函数计算,以比较结构空位,六角形BN掺杂剂和钝化剂对石墨烯电子结构的影响。定性地,这三种类型的结构缺陷的行为相同,但它们所产生的能带结构仅稍有不同。通过调整结构缺陷的形状,我们展示了如何根据各向异性蜂窝晶格的紧束缚模型在相互空间中移动狄拉克锥,而带隙开口的基本机理却保持不变。为了定量地预测这些材料的带隙和光学性质,我们采用具有格林函数(GW / Bethe-Salpeter方程)的多体摄动理论来直接包括电子-电子和电子-空穴相互作用。结构改性的石墨烯在单个粒子描述上显示出基带隙的强烈正态化,并且由强激子结合能(> 0.5 eV)表示出了强烈的电子-空穴相互作用。最后,我们表明,如果包括自旋轨道相互作用,则结构改性的石墨烯可以具有拓扑绝缘相。紧密结合计算表明,绝缘石墨烯纳米网也是具有巨大体带隙的量子自旋霍尔绝缘体,对于下一代自旋电子学来说,这是极有价值的材料。

著录项

  • 作者

    Dvorak, Marc David.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Condensed matter physics.;Theoretical physics.;Quantum physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号