首页> 外文学位 >Modeling and Applications of Dielectric Substrates at MM-Wave Frequencies and Realization of a New Class of Metamorphic Materials.
【24h】

Modeling and Applications of Dielectric Substrates at MM-Wave Frequencies and Realization of a New Class of Metamorphic Materials.

机译:介电基体在MM波频率下的建模与应用以及新型变质材料的实现。

获取原文
获取原文并翻译 | 示例

摘要

The millimeter-wave frequency band spectrum represents a great opportunity for ultrahigh-speed, short-range wireless communications and a wealth of new applications such as target positioning or tracking. However, a number of challenges remain for this spectrum to be a viable solution for high-volume consumer applications.;One challenge is the determination of the electromagnetic properties of dielectric substrate packaging materials and metamorphic structures. This is vital for the optimal and robust design of beamforming mm-wave systems. In this thesis we present "The Covered Transmission Line Method", a new method to determine the complex permittivity of printed circuit and packaging materials at the mm-wave frequencies. This method is relevant in that it allows for testing of a variety of materials without changes on the setup and with minimal sample processing.;Some applications however, require more advanced materials, called metamorphic materials, which are able to change their response to electromagnetic waves. We present in here a unique electromagnetically metamorphic material that can undergo four distinct electromagnetic states (Perfect Electric Conductor, Perfect Magnetic Conductor, Perfect Amplification and Perfect Absorption). Fundamental mathematical and electromagnetic analysis has been used to obtain a full wave analytical model of the scattering properties of this novel composite material. For the first time, a truly metamorphic surface that can precisely be tuned to any electromagnetic state has been fabricated and tested. This is achieved by loading the basic elements (printed circular rings) of the surface with active devices (tunnel diodes) that can sweep their terminal resistance from a high negative to a high positive value.;The combination of small wavelength and large available bandwidth make mm-wave target positioning systems a viable option to achieve the desired accuracy. However, such systems require the use of beamforming mm-wave antenna systems to mitigate the high path losses (there are 21 dB more path losses at 60 GHz than at 5 GHz). In this work, we present a novel high-gain beam selection 60 GHz band Grid Array antenna that fulfills the requirements of beamforming, low-cost and small size for integration with mobile devices.;Regarding target positioning applications, we study the impact of using beamforming mm-wave antenna systems on the location precision of multiple targets in a realistic indoor environment. The positioning error is assessed when omnidirectional antennas are used at the receiving sensors and when they are substituted by beamforming antennas.
机译:毫米波频段频谱为超高速,短距离无线通信和大量新应用(例如目标定位或跟踪)提供了绝佳的机会。然而,要使该频谱成为大批量消费应用的可行解决方案,仍然存在许多挑战。一个挑战是确定介电基板包装材料和变质结构的电磁性能。这对于波束成形毫米波系统的优化和坚固设计至关重要。在本文中,我们提出“覆盖传输线方法”,这是一种确定毫米波频率下印刷电路和包装材料的复介电常数的新方法。这种方法的相关性在于它可以测试各种材料而无需更改设置并且只需最少的样品处理。然而,某些应用需要更高级的材料(称为变质材料),这些材料能够改变其对电磁波的响应。我们在这里介绍了一种独特的电磁变质材料,该材料可以经历四种不同的电磁状态(完美电导体,完美磁导体,完美放大和完美吸收)。基本的数学和电磁分析已用于获得这种新型复合材料散射特性的全波分析模型。首次制造并测试了可以精确调整到任何电磁状态的真正变形表面。这是通过在表面的基本元素(印刷圆环)上加载有源器件(隧道二极管)来实现的,有源器件可以将其终端电阻从高负值扫描到高正值。小波长和大可用带宽的结合使得毫米波目标定位系统是实现所需精度的可行选择。但是,这样的系统需要使用波束成形毫米波天线系统来减轻高路径损耗(60 GHz处的路径损耗比5 GHz处的路径损耗多21 dB)。在这项工作中,我们提出了一种新颖的高增益波束选择60 GHz频段栅格阵列天线,该天线满足了波束成形,低成本和与移动设备集成的小尺寸的要求。关于目标定位应用,我们研究了使用天线的影响波束成形毫米波天线系统可以在现实的室内环境中对多个目标进行精确定位。当在接收传感器上使用全向天线并用波束成形天线代替全向天线时,将评估定位误差。

著录项

  • 作者

    Papio Toda, Anna.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号