首页> 外文学位 >Aero-Assisted Spacecraft Missions Using Hypersonic Waverider Aeroshells.
【24h】

Aero-Assisted Spacecraft Missions Using Hypersonic Waverider Aeroshells.

机译:使用高超音速Waverider机壳的航空辅助航天器任务。

获取原文
获取原文并翻译 | 示例

摘要

This work examines the use of high-lift, low drag vehicles which perform orbital transfers within a planet's atmosphere to reduce propulsive requirements. For the foreseeable future, spacecraft mission design will include the objective of limiting the mass of fuel required. One means of accomplishing this is using aerodynamics as a supplemental force, with what is termed an aero-assist maneuver. Further, the use of a lifting body enables a mission designer to explore candidate trajectory types wholly unavailable to non-lifting analogs. Examples include missions to outer planets by way of an aero-gravity assist, aero-assisted plane change, aero-capture, and steady atmospheric periapsis probing missions. Engineering level models are created in order to simulate both atmospheric and extra-atmospheric space flight. Each mission is parameterized using discrete variables which control multiple areas of design. This work combines the areas of hypersonic aerodynamics, re-entry aerothermodynamics, spacecraft orbital mechanics, and vehicle shape optimization. In particular, emphasis is given to the parametric design of vehicles known as "waveriders" which are inversely designed from known shock flowfields. An entirely novel means of generating a class of waveriders known as "starbodies" is presented. A complete analysis is performed of asymmetric starbody forms and compared to a better understood parameterization, "osculating cone" waveriders. This analysis includes characterization of stability behavior, a critical discipline within hypersonic flight. It is shown that asymmetric starbodies have significant stability improvement with only a 10% reduction in the lift-to-drag ratio. By combining the optimization of both the shape of the vehicle and the trajectory it flies, much is learned about the benefit that can be expected from lifting aero-assist missions. While previous studies have conceptually proven the viability, this work provides thorough quantification of the optimized outcome. In examining an aero-capture of Mars, it was found that with a lifting body, the increased maneuverability can allow completion of multiple mission objectives along with the aero-capture, such as atmospheric profiling or up to 80 degrees of orbital plane change. Completing a combined orbital plane change and aero-capture might save as much as 4.5 km/s of velocity increment while increasing the feasible entry corridor by an order of magnitude. Analyzing a higher energy mission type, a database of maximum aero-gravity assist performance is developed at Mars, Earth and Venus. Finally, a methodology is presented for designing end-to-end interplanetary missions using aero-gravity assists. As a means of demonstrating the method, promising trajectories are propagated which reduce the time of flight of an interstellar probe mission by up to 50%.
机译:这项工作研究了高升力,低阻力的车辆的使用,这些车辆在行星大气层内进行轨道转移以减少推进力。在可预见的将来,航天器的任务设计将包括限制所需燃料量的目标。实现此目的的一种方法是使用空气动力学作为补充力,即所谓的“空气辅助操纵”。此外,使用举升体使任务设计者能够探索非举升类比完全无法获得的候选轨迹类型。例如,通过重力辅助,航空辅助的飞机换向,航空捕捉和稳定的大气层围堵探测任务对外行星的飞行任务。为了模拟大气和超大气层空间飞行,创建了工程级模型。使用离散变量对每个任务进行参数设置,这些变量控制多个设计领域。这项工作结合了高超声速空气动力学,再入空气热力学,航天器轨道力学和飞行器形状优化等领域。特别地,重点是被称为“ waveriders”的车辆的参数设计,该车辆是根据已知的冲击流场反向设计的。提出了一种产生一类称为“星体”的波状辐射体的全新方法。对不对称的星体形式进行了完整的分析,并将其与更好理解的参数化“密合圆锥形”波导管仪进行了比较。该分析包括稳定行为的表征,这是高超音速飞行中的关键学科。结果表明,不对称星体具有显着的稳定性提高,升阻比仅降低10%。通过结合对车辆形状和飞行轨迹的优化,人们可以学到很多有关提升空中协助任务的好处。尽管先前的研究从概念上证明了可行性,但这项工作为优化结果提供了全面的量化方法。在检查火星的航空捕获过程中,发现通过提升机体,增加的机动性可以与航空捕获一起完成多个任务目标,例如大气廓线或高达80度的轨道平面变化。完成组合的轨道平面变化和航空捕获,可以节省多达4.5 km / s的速度增量,同时将可行的入口通道增加一个数量级。通过分析更高能量的任务类型,在火星,地球和金星建立了最大重力重力辅助性能的数据库。最后,提出了一种使用重力辅助设计端对端星际飞行任务的方法。作为演示该方法的一种手段,可以传播有希望的轨迹,从而将星际探测任务的飞行时间减少多达50%。

著录项

  • 作者

    Knittel, Jeremy.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 294 p.
  • 总页数 294
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号