首页> 外文学位 >Model creation and electronic structure calculation of amorphous hydrogenated boron carbide.
【24h】

Model creation and electronic structure calculation of amorphous hydrogenated boron carbide.

机译:非晶氢化碳化硼的模型创建和电子结构计算。

获取原文
获取原文并翻译 | 示例

摘要

Boron-rich solids are of great interest for many applications, particularly, amorphous hydrogenated boron carbide (a-BC:H) thin films are a leading candidate for numerous applications such as: heterostructure materials, neutron detectors, and photovoltaic energy conversion. Despite this importance, the local structural properties of these materials are not well-known, and very few theoretical studies for this family of disordered solids exist in the literature. In order to optimize this material for its potential applications the structure property relationships need to be discovered. We use a hybrid method in this endeavor---which is to the best of our knowledge the first in the literature---to model and calculate the electronic structure of amorphous hydrogenated boron carbide (a-BC:H). A combination of classical molecular dynamics using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and ab initio quantum mechanical simulations using the Vienna ab initio simulation package (VASP) have been conducted to create geometry optimized models that consist of a disordered hydrogenated twelve-vertex boron carbide icosahedra, with hydrogenated carbon cross-linkers. Then, the density functional theory (DFT) based orthogonalized linear combination of atomic orbitals (OLCAO) method was used to calculate the total and partial density of states (TDOS, PDOS), the complex dielectric function epsilon, and the radial pair distribution function (RPDF). The RPDF data stand as predictions that may be compared with future experimental electron or neutron diffraction data. The electronic structure simulations were not able to demonstrate a band gap of the same nature as that seen in prior experimental work, a general trend of the composition-properties relationship was established. The content of hydrogen and boron was found to be directly proportional to the decrease in the number of available states near the fermi energy, and inversely proportional to the dielectric constant, which is explained by the decrease in network connectivity. The use of an idealized structure for the icosahedra (defects exist in reality), and the use of the local density approximation for the exchange-correlation functional---which tends to underestimate the bandgap---are considered the main reasons for the inability of quantitatively identifying band gap values that match the experiment.
机译:富含硼的固体对于许多应用都非常感兴趣,特别是非晶氢化碳化硼(a-BC:H)薄膜是许多应用(例如异质结构材料,中子探测器和光伏能量转换)的主要候选材料。尽管具有这种重要性,但这些材料的局部结构性能尚不为人所知,并且文献中很少对该无序固体家族进行理论研究。为了针对这种材料的潜在应用优化该材料,需要发现其结构特性关系。我们在这项工作中使用了一种混合方法-据我们所知,这是文献中的第一篇--对非晶态氢化碳化硼(a-BC:H)的电子结构进行建模和计算。使用大型原子/分子大规模并行模拟器(LAMMPS)的经典分子动力学与使用Vienna从头算模拟程序包(VASP)的从头算术量子力学模拟的结合已进行,以创建由无序氢化组成的几何优化模型十二顶点碳化硼二十面体,带有氢化碳交联剂。然后,使用基于密度泛函理论(DFT)的原子轨道正交线性组合(OLCAO)方法来计算状态的总密度和部分密度(TDOS,PDOS),复介电函数epsilon和径向对分布函数( RPDF)。 RPDF数据是可以与将来的实验电子或中子衍射数据进行比较的预测。电子结构模拟不能证明与以前的实验工作所见具有相同性质的带隙,建立了组成-性质关系的总体趋势。发现氢和硼的含量与费米能量附近的可用状态数量的减少成正比,与介电常数成反比,这由网络连通性的降低来解释。对二十面体使用理想化的结构(现实中存在缺陷),以及对交换相关函数使用局部密度近似(这往往低估了带隙),被认为是无法实现此功能的主要原因定量识别与实验匹配的带隙值。

著录项

  • 作者

    Belhadj Larbi, Mohammed.;

  • 作者单位

    University of Missouri - Kansas City.;

  • 授予单位 University of Missouri - Kansas City.;
  • 学科 Condensed matter physics.;Chemistry.;Physics.
  • 学位 M.S.
  • 年度 2015
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号