首页> 外文学位 >Eulerian Formulation of Spatially Constrained Elastic Rods.
【24h】

Eulerian Formulation of Spatially Constrained Elastic Rods.

机译:空间约束弹性杆的欧拉公式。

获取原文
获取原文并翻译 | 示例

摘要

Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces.;The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface.;The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration by means of either its relative position with respect to the constraint axis (contact-free segments) or its angular position on the constraint surface (continuous contacts.) This formulation circumvents both drawbacks that afflict the conventional Lagrangian approach associated with the segmentation strategy. As the a priori unknown domain, viz. the rod length, is substituted for the known constraint axis, the free boundary problem and the associated isoperimetric constraints are converted into a classical two-point boundary value problem. Additionally, the description of the rod deflection by means of its eccentricity with respect to the constraint axis trivializes the assessment of the unilateral contact condition. Along continuous contacts, this formulation expresses the strain variables, measuring the rod change of shape, in terms of the geometric invariants of the constraint surface, and emphasizes the influence of the constraint local geometry on the reaction pressure.;Formalizing the segmentation strategy, a computational model that exploits the Eulerian formulation of the rod governing equations is devised. To solve the quasi-static deflection of elastic rods constrained inside or around a tube-like surface, this computational model identifies the number of contacts, their nature (either discrete or continuous), and the rod configuration at the connections that satisfies the unilateral contact condition and preserves the rod integrity along the sequence of elementary problems.
机译:细长的弹性杆在自然和技术上无处不在。对于绝大多数应用,杆的挠曲受到外部约束的限制,并且弹性体的很大一部分与刚性约束表面接触。该博士论文中提出的研究工作为约束在无摩擦管状表面内或周围的弹性杆的求解建立了计算模型。用来解决这类复杂问题的分割策略是将整体问题排序为简单的基本问题,要么与约束连续接触,要么在肢体之间无接触。然而,在传统的弹性杆的拉格朗日公式中,该方法具有两个主要缺点。首先,在每个基本问题的两个末端指定杆中心线位置的边界条件导致建立了等长约束,即对杆的未知长度的积分约束。其次,单边接触条件的评估原则上需要比较由不同曲线坐标参数化的两条曲线,即。杆中心线和约束轴。两者都合计负担与该方法相关的计算。为了简化基本问题的求解并合理化单边接触条件的评估,在约束的欧拉框架内重新制定了控制杆方程。对这两种基本问题的方法性探索导致了杆控制方程的特定公式化,从而强调了杆的力学与约束表面的几何形状之间的深刻联系。拟议的欧拉公式化,重新确立了杆的局部平衡与约束轴相关的曲线坐标的术语通过其相对于约束轴的相对位置(无接触段)或其在约束表面上的角位置(连续接触)来描述杆变形构造。规避了与分段策略相关的传统拉格朗日方法所困扰的两个缺点。作为先验未知域,即。用杆的长度代替已知的约束轴,将自由边界问题和相关的等长约束转换为经典的两点边界值问题。另外,通过杆偏心相对于约束轴的偏心来描述杆偏心,使单边接触条件的评估变得微不足道。沿连续接触,该公式根据约束表面的几何不变性表示应变变量,测量杆的形状变化,并强调约束局部几何形状对反应压力的影响。设计了一种利用杆控制方程欧拉公式的计算模型。为了解决约束在管状表面内部或周围的弹性杆的准静态挠度,此计算模型确定了接触点的数量,其性质(离散的或连续的)以及满足单边接触的连接处的杆构型并沿着基本问题的顺序保持杆的完整性。

著录项

  • 作者

    Huynen, Alexandre.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering.;Physics.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号