首页> 外文学位 >Lithium ion battery modeling, estimation, and aging for hybrid electric vehicle applications.
【24h】

Lithium ion battery modeling, estimation, and aging for hybrid electric vehicle applications.

机译:混合动力电动汽车应用的锂离子电池建模,估算和老化。

获取原文
获取原文并翻译 | 示例

摘要

Reducing greenhouse gas emissions and improving the fuel efficiency of automobiles, trucks, and buses can be achieved by partial and full electrification of the vehicle sector. Lithium ion battery technology is the leading candidate for vehicle electrification. Despite many advantages of lithium ion battery technology, over-conservative pack design due to a lack of advanced battery management hinders its widespread deployment in the transportation sector. This dissertation introduces a model-based approach for safe and efficient advanced lithium ion battery management.;Low order, explicit models of lithium ion cells are critical for real-time battery management system (BMS) applications. Li-ion cell response varies significantly with temperature and cell temperature measurements are often available. This study presents a 7th order, single particle model with electrolyte diffusion and temperature dependent parameters (ESPM-T model). The impedance transfer function coefficients are explicit in terms of the model parameters, simplifying the implementation of temperature dependence yet providing an accurate model. The 7 th order, linear, electrolyte enhanced, single particle model (ESPM) is used as the basis for a Luenberger SOC observer for a lithium ion cell. Isothermal and non-isothermal observer performances are compared with a commercially-available finite volume code and the benefits of temperature measurement are shown for a wide range of temperature and pulse C-rates.;The ESPM is then extended to a nonlinear, electrolyte-enhanced, single particle model (NESPM), which includes nonlinearities associated with open circuit voltage and Butler-Volmer (B-V) kinetics. The model is validated with experimental full charge, discharge, and HEV cycles from 4.5 Ah high power and 20 Ah high energy graphite (gr)/LiFePO4 (LFP) cells. The NESPM is capable of operating up to 3C constant charge-discharge cycles and up to 25C and 10 sec charge-discharge pulses within 35-65% state of charge (SOC) with less than 2% error for the 4.5 Ah high power cell. For the 20 Ah high energy cell, the NESPM model is capable of operating up to 2 C constant charge-discharge cycles and up to 10C and 10 sec charge-discharge pulses within 30-90% SOC window with 3.7% maximum error.;An aging model due to solid electrolyte interphase layer growth is added to the NESPM model. The NESPM aging model is then simplified to obtain explicit formulas for capacity fade and impedance rise that depend on the battery parameters and current input history. These simple aging models can be implemented in online model based battery SOH estimation. The formulas show that aging increases with SOC, operating temperature, time, and root mean square (RMS) current. The formula predicts that HEV current profiles with the (i) same average SOC, (ii) small SOC swing, (iii) same operating temperature, (iv) same cycle length, and (v) same RMS current, will have the same cell capacity fade.;The single cell ESPM-T model is extended to a pack model with three cells in parallel to develop thermal management strategies to extend battery life within a desired performance window. Instead of defining battery End of Life (EOL) as an arbitrary percent of capacity loss, it is defined as the cycle number when.
机译:通过汽车行业的部分和全部电气化,可以减少温室气体排放并提高汽车,卡车和公共汽车的燃料效率。锂离子电池技术是车辆电气化的领先候选者。尽管锂离子电池技术有许多优点,但由于缺乏先进的电池管理功能,过分保鲜的包装设计阻碍了其在交通运输领域的广泛应用。本文介绍了一种基于模型的安全高效的高级锂离子电池管理方法。低阶,明确的锂离子电池模型对于实时电池管理系统(BMS)应用至关重要。锂离子电池的响应随温度变化很大,通常可以进行电池温度测量。这项研究提出了具有电解质扩散和温度相关参数的7阶单粒子模型(ESPM-T模型)。阻抗传递函数系数在模型参数方面是明确的,从而简化了温度依赖性的实现,但提供了准确的模型。 7阶线性电解质增强单粒子模型(ESPM)被用作锂离子电池Luenberger SOC观察器的基础。将等温和非等温观测器性能与市售的有限体积代码进行了比较,并显示了温度测量的优势,适用于各种温度和脉冲C速率。然后将ESPM扩展到非线性的,电解质增强的单粒子模型(NESPM),其中包括与开路电压和巴特勒-沃尔默(BV)动力学相关的非线性。该模型已在4.5 Ah高功率和20 Ah高能石墨(gr)/ LiFePO4(LFP)电池的实验性满充电,放电和HEV循环中得到验证。 NESPM能够在35-65%的荷电状态(SOC)内运行高达3C的恒定充放电周期以及高达25C和10 sec的充放电脉冲,而对于4.5 Ah高功率电池,其误差小于2%。对于20 Ah高能电池,NESPM模型能够在30-90%SOC窗口内以高达2%的恒定充放电周期以及高达10C和10秒的充放电脉冲运行,最大误差为3.7%。 NESPM模型中添加了由于固体电解质中间层生长而引起的老化模型。然后简化NESPM老化模型,以获取取决于电池参数和电流输入历史记录的容量衰减和阻抗上升的明确公式。这些简单的老化模型可以在基于在线模型的电池SOH估算中实现。公式显示,老化随着SOC,工作温度,时间和均方根(RMS)电流的增加而增加。该公式预测具有(i)平均SOC,(ii)小SOC摆幅,(iii)相同的工作温度,(iv)相同的周期长度和(v)相同的RMS电流的HEV电流分布将具有相同的电池单电池ESPM-T模型扩展到三个电池并联的电池组模型,以开发热管理策略,以在所需的性能窗口内延长电池寿命。它不是将电池寿命终止(EOL)定义为容量损耗的任意百分比,而是定义为循环次数。

著录项

  • 作者

    Tanim, Tanvir R.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mechanical engineering.;Automotive engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号