首页> 外文学位 >Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells.
【24h】

Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells.

机译:汽车PEM燃料电池的疲劳和机械损伤传播。

获取原文
获取原文并翻译 | 示例

摘要

Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions.;It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the alternative materials for the next generation of fuel cell development.
机译:聚合物电解质膜(PEM)燃料电池在汽车应用中时,通常会遭受高强度的道路振动和冲击载荷,频繁的湿度-温度载荷循环以及冻融应力。所产生的机械应力可以在膜电极组件(MEA)的机械缺陷演变过程中发挥重要作用。这项研究的重点是研究由于湿度-温度(湿热)循环和振动引起的疲劳挑战,以及它们对PEM燃料电池损伤发展的影响。为了实现这一目标,本论文分为三个部分,以深入了解MEA在i)湿热循环,ii)外部施加的振动以及iii)两者结合以模拟现实的汽车条件下在MEA中的传播。建立了基于内聚区理论的有限元损伤模型,以模拟燃料电池工作条件下MEA中微尺度缺陷(裂纹和分层)的传播。在达到所需的燃料电池寿命之前,进行启动和关闭循环。湿热循环和振动的同时存在严重加剧了损伤的传播,并在燃料电池预期寿命的75%之内导致了相当大的缺陷。但是,发现在湿热循环下产生的损坏的顺序要比振动大。在湿热循环下,与分层传播相比,膜裂纹的传播更为严重。相反,振动对分层的影响更大。与对齐通道的情况相比,在组合载荷下存在阳极/阴极通道偏移会导致分层长度增加2.5倍。开发的模型可用于调查燃料电池中使用的当前材料的损坏行为,以及评估下一代燃料电池开发的替代材料。

著录项

  • 作者

    Banan, Roshanak.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Mechanical engineering.;Automotive engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号