首页> 外文学位 >Design, modeling and analysis of continuum robots as surgical assistants with intrinsic sensory capabilities.
【24h】

Design, modeling and analysis of continuum robots as surgical assistants with intrinsic sensory capabilities.

机译:设计,建模和分析具有内在感官功能的连续机器人作为手术助手。

获取原文
获取原文并翻译 | 示例

摘要

New robotic surgical assistants are expected to enable precise dexterous manipulation and provide haptic perception in robot-assisted Minimally Invasive Surgery (MIS). Their implementations in MIS have been shown to further reduce patients' postoperative pain, complications, hospitalization time, etc. This dissertation presents the modeling and analysis for a new type of continuum robots as surgical assistants with intrinsic sensory capabilities. These continuum robots consist of multiple flexible backbones, enhancing dexterity at the distal ends of the surgical assistants, integrating wrench sensing capabilities and possessing inherent flexibility that assures soft and safe interactions with the human anatomy.;This dissertation first presents simplified models for kinematics and statics of these continuum robots. These models are extended from previous works and are based on a ubiquitously accepted assumption that shape of each segment of the continuum robots is circular. This assumption is experimentally validated and some necessary correction factors are introduced.;The simplified models for kinematics and statics can be evaluated in a real-time manner and enable the implementation of the continuum robots in a 16-DoF dual-arm teleoperative robotic system for the throat MIS and in a 17-DoF dual-arm teleoperative robotic system for the Single Port Access (SPA) abdominal surgery. An actuation compensation method for these continuum robots is presented to compensate for the discrepancy between the simplified model and the actual kinematic characteristic of the continuum robots in order to assure manipulation accuracy during the operations. This compensation method uses a tiered hierarchy of two novel approaches in both joint space and configuration space for these remotely actuated continuum robots. Experimental results validate the compensation method by demonstrating suturing and knot tying in confined spaces using these robots under surgeons' control.;The intrinsic wrench sensing capability of these continuum robots is then investigated. This wrench estimation is achieved via monitoring the actuation forces of the joints and is referred to as intrinsic wrench sensing . The essence of this intrinsic wrench sensing is to treat the entire continuum robot as a multiple-axis force sensor and having transducers monitor the loads on the actuation lines. This end-effector-as-sensor approach fulfills the rapidly increasing needs for miniature tools with force sensing capability subject to various limitations in MIS, such as sizes, MRI compatibility, sterilizability, etc. The presented wrench sensing capability is validated through experiments in different scenarios, demonstrating these continuum robots can sense the external wrenches and generate stiffness map of phantom tissues for possible medical applications such as palpation for tumor detection. In order to understand the limitation of the intrinsic wrench sensing, screw theory is used to provide geometric interpretation of the sensible and insensible wrenches. The analysis is based on the Singular Value Decomposition (SVD) of the Jacobian mapping between the configuration space and the twist space of the end effector. Furthermore, in order to quantify how suitable the intrinsic wrench sensing is for different scenarios, a performance index is introduced as an extension of the evaluation index for load cell designs. Evaluations of the performance index for different types of robots in simulation case studies show that this index can serve as an implementation guide for robots that provide force sensing.;These new continuum robots consist of one or more flexible segments. Each segment consists of one primary backbone and multiple secondary backbones. It possesses two degrees of freedom (DoF) via simultaneous actuation of the secondary backbones in a push-pull mode. Actuation redundancy is introduced since three secondary backbones are actuated to carry out a 2-DoF bending motion for each segment.;In the end, a novel and unified analytic formulation for kinematics, statics, and shape restoration of these continuum robots is presented to study the exact shapes of all the backbones. A solution framework based on constraints of geometric compatibility and static equilibrium is derived using elliptic integrals. This framework allows the investigation of the effects of different external loads and actuation redundancy resolutions on the shape variations of these continuum robots. The simulation and experimental validation results show that these continuum robots bend into an exact circular shape for one particular actuation resolution. The simulation results show that these continuum robots have the ability to redistribute loads among their backbones without introducing significant shape variations. (Abstract shortened by UMI.)
机译:新型机器人外科助手有望在机器人辅助的微创手术(MIS)中实现精确的灵巧操作并提供触觉感知。它们在MIS中的实现已被证明可以进一步减轻患者的术后疼痛,并发症,住院时间等。本文提出了一种新型的连续性机器人的建模和分析方法,该机器人作为具有内在感官功能的手术助手。这些连续体机器人由多个柔性骨架组成,增强了手术助手远端的灵活性,集成了扳手感测功能,并具有固有的灵活性,可确保与人体解剖结构进行软,安全的交互。本文首先提出了运动学和静力学的简化模型。这些连续体机器人。这些模型是先前工作的扩展,并基于普遍接受的假设,即连续机器人的每个部分的形状都是圆形的。该假设已通过实验验证,并引入了一些必要的校正因子。简化的运动学和静态模型可以实时评估,并可以在16自由度双臂机器人系统中实现连续机器人喉部MIS以及用于单端口访问(SPA)腹部手术的17自由度双臂双臂机器人系统。提出了一种用于这些连续机器人的致动补偿方法,以补偿简化模型与连续机器人的实际运动特性之间的差异,以确保操作过程中的操纵精度。对于这些遥控连续机器人,这种补偿方法在关节空间和配置空间中使用两种新颖方法的分层层次。实验结果表明,在机器人的控制下,这些机器人在狭窄的空间内进行了缝合和打结,从而证明了补偿方法的有效性。这种扳手估算是通过监视关节的促动力来实现的,称为固有扳手感测。这种固有的扳手感测的本质是将整个连续机器人视为多轴力传感器,并具有传感器来监控驱动线上的负载。这种作为传感器的末端执行器方法满足了对微型工具的快速增长的需求,这些微型工具具有受力控制能力(受尺寸,MRI兼容性,可灭菌性等各种MIS限制)的限制。通过各种不同的实验验证了所提供的扳手感应能力场景,演示这些连续体机器人可以感知外部扳手并生成体模组织的刚度图,以用于可能的医疗应用,例如触诊肿瘤检测。为了理解固有扳手感测的局限性,使用螺丝理论对灵敏和不灵敏的扳手进行了几何解释。该分析基于末端执行器的配置空间和扭曲空间之间的雅可比映射的奇异值分解(SVD)。此外,为了量化固有扳手感测在不同情况下的适用性,引入了性能指标作为称重传感器设计评估指标的扩展。在仿真案例研究中对不同类型的机器人的性能指标的评估表明,该指标可以作为提供力感测的机器人的实施指南。这些新型连续体机器人由一个或多个柔性段组成。每个网段由一个主干和多个辅助主干组成。通过在推挽模式下同时激活辅助主干,它具有两个自由度(DoF)。由于激活了三个辅助主干以对每个段执行2-DoF弯曲运动,因此引入了驱动冗余。最后,提出了一种新颖统一的解析方法,用于这些连续体机器人的运动学,静力学和形状恢复。所有主干的确切形状。使用椭圆积分推导出基于几何相容性和静态平衡约束的解决方案框架。该框架允许研究不同的外部负载和致动冗余分辨率对这些连续机器人的形状变化的影响。仿真和实验验证结果表明,对于一种特定的驱动分辨率,这些连续体机器人可以弯曲成精确的圆形。仿真结果表明,这些连续机器人具有在主干之间重新分配载荷的能力,而不会引起明显的形状变化。 (摘要由UMI缩短。)

著录项

  • 作者

    Xu, Kai.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号